Skip to main content

Simultaneous NIR-EPR Spectroscopy of Rat Brain Oxygenation

  • Conference paper
Oxygen Transport to Tissue XXVI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 566))

Abstract

Changes in cerebral oxygenation were simultaneously monitored by electric paramagnetic resonance (EPR) oximetry and near-infrared spectroscopy (NIRS). The tissue oxygen tension (t-pO2) was measured with an L-band (1.2 GHz) EPR spectrometer with an external loop resonator and the concentration of oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] were measured with a full-spectral NIRS system. Mean cerebral hemoglobin saturation (SmcO2) was calculated from the absolute [HbO2] and [Hb]. Six adult male rats were implanted with lithium phthalocyanine (LiPc) crystals into the left cerebral cortex. The change in oxygenation of the brain was induced by altering the inspired oxygen fraction (FiO2) in air from 0.30 at baseline to 0.0, 0.05, 0.10, and 0.15 for 1, 2, 5, and 5 minutes, respectively, followed by reoxygenation with an FiO2 = 0.30. Although both t-pO2 and SmcO2 values showed a decrease during reduced FiO2 followed by recovery on reoxygenation, it was found that SmcO2 recovered more rapidly than t-pO2 during the recovery phase. The recovery of t-pO2 is not only related to blood oxygenation, but also to delivery, consumption, and diffusion of oxygen into the tissue from the vascular system. Further studies will be required to determine the exact mechanisms for the delay between the recovery of SmcO2 and t-pO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. M. Afeworki, N. R. Miller, N. Devasahayam, J. Cook, J. B. Mitchell, S. Subramanian, and M. C. Krishna, Preparation and EPR studies of lithium phthalocyanine radical as an oxymetric probe, Free Radical Biol. Med. 25(1), 72–78 (1998).

    Article  CAS  Google Scholar 

  2. K. J. Liu, P. Gast, M. Moussavi, S. W. Norby, N. Vahidi, T. Walczak, M. Wu, and H. M. Swartz, Lithium phthalocyanine: A probe for electron paramagnetic resonance oximetry in viable biological systems, Proc. Natl. Acad. Sci. USA 90, 5438–5442 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. N. Vahidi, R. B. Clarkson, K. J. Liu, S. W. Norby, M. Wu, and H. M. Swartz, In vivo and in vitro EPR oxymetry with fusinite: A new coal-based solid state EPR probe, Magn. Reson. Med. 31, 139–146 (1994).

    PubMed  CAS  Google Scholar 

  4. S. J. Matcher, and C. E. Cooper, Absolute quantification of deoxyhemoglobin concentration in tissue near-infrared spectroscopy, Phys. Med. Biol. 39, 1295–1312 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. S. J. Matcher, M. Cope, and D. T. Delpy, Use of the water-absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy, Phys. Med. Biol. 39, 177–196 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. M. Intaglietta, P. C. Johnson, and R. M. Winslow, Microvascular and tissue oxygen distribution, Cardiovasc. Res. 32, 632–643 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. H. Kobayashi, B. Pelster, J. Piper, and P. Scheid, Significance of Bohr effect for tissue oxygenation in a model with counter current blood flow, Respir. Physiol. 76, 227–288 (1989).

    Google Scholar 

  8. A. G. Tsai, P. C. Johnson, and M. Intaglietta, Oxygen gradients in the microcirculation, Physiol. Rev. 83(3), 933–963 (2003).

    PubMed  CAS  Google Scholar 

  9. N. J. Edmunds, and J. M. Marshall, Vasodilatation, oxygen delivery and oxygen consumption in rat hindlimb during systemic hypoxia: roles of nitric oxide, J. Physiol. 532(Pt 1), 251–259 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, Microvascular and tissue oxygen gradients in the rat mesentery, Proc. Natl. Acad. Sci. USA 95(12), 6590–6595 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. A. Vadapalli, R. N. Pittman, and A. S. Popel, Estimating oxygen transport resistance of the microvascular wall, Am. J. Physiol. Heart Circ. Physiol. 279, H657–H671 (2000).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Sakata, Y.S., Grinberg, O.Y., Grinberg, S., Springett, R., Swartz, H.M. (2005). Simultaneous NIR-EPR Spectroscopy of Rat Brain Oxygenation. In: Okunieff, P., Williams, J., Chen, Y. (eds) Oxygen Transport to Tissue XXVI. Advances in Experimental Medicine and Biology, vol 566. Springer, Boston, MA. https://doi.org/10.1007/0-387-26206-7_47

Download citation

Publish with us

Policies and ethics