Skip to main content

Possible Protective Effects of α-Tocopherol on Enhanced Induction of Reactive Oxygen Species by 2-Methoxyestradiol in Tumors

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 566))

Abstract

Several non-surgical tumor treatment modalities produce their cytotoxic activity by generating reactive oxygen species (ROS). Anti-oxidative enzymes such as superoxide dismutase (SOD) or exogenously supplied antioxidants may therefore reduce the efficacy of these treatments. The aim of the present study was to analyze the impact of (i) inhibiting SOD using 2-methoxyestradiol (2-ME), or (ii) application of α-tocopherol, on the cellular damage induced by hyperthermia (HT) in experimental tumors. DS-sarcoma cells grew either in culture or as solid tumors subcutaneously implanted in rats. In vitro, DS-cells were incubated with 2-ME, and cell proliferation, ROS formation, lipid peroxidation and apoptosis were measured. In vivo, DS-sarcomas were treated with a ROS-generating hyperthermia combined with 2-ME or α-tocopherol application.

Inhibition of SOD by 2-ME in vitro induced pronounced oxidative injury resulting in reduced proliferation. In vivo, ROS-generating hyperthermia led to local tumor control in 23% of the animals. The additional inhibition of SOD by 2-ME increased the control rate by approximately 50%. Application of α-tocopherol was found to have no effect on local tumor control, either in combination with ROS-generating hyperthermia or when 2-ME was additionally applied. Inhibition of SOD during ROS-generating hyperthermia results in pronounced cell injury and an improved local tumor control whereas exogenously applied vitamin E seems not to have an impact on oxidative stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. E. J. Hall, Radiobiology for the Radiologist, 5th edition (J.B. Lippincott, Philadelphia, 2000).

    Google Scholar 

  2. B. K. Sinha, and E. G. Mimnaugh, Free radicals and anticancer drug resistance: oxygen free radicals in the mechanisms of drug cytotoxicity and resistance by certain tumors, Free Radical Biol. Med. 8, 567–581 (1990).

    Article  CAS  Google Scholar 

  3. Q. Chen, Z. Huang, H. Chen, H. Shapiro, J. Beckers, and F. W. Hetzel, Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy, Photochem. Photobiol. 76, 197–203 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. I. Fridovich, Superoxide radical and superoxide dismutases, Ann. Rev. Biochem. 64, 97–112 (1995).

    Article  PubMed  CAS  Google Scholar 

  5. P. Huang, L. Feng, E. A. Oldham, M. J. Keating, and W. Plunkett, Superoxide dismutase as a target for the selective killing of cancer cells, Nature 407, 390–395 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. E. Germain, V. Chajes, S. Cognault, C. Lhuillery, and P. Bougnoux, Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231: relationship to lipid peroxidation, Int. J. Cancer 75, 578–583 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. J. Hannemann, and K. Baumann, Cisplatin-induced lipid peroxidation and decrease of gluconeogenesis in rat kidney cortex: different effects of antioxidants and radical scavengers, Toxicology 51, 119–132 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. C. Leonetti, A. Biroccio, C. Gabellini, M. Scarsella, V. Maresca, E. Flori, L. Bove, A. Pace, A. Stoppacciaro, G. Zupi, F. Cognetti, and M. Picardo, α-tocopherol protects against cisplatin-induced toxicity without interfering with antitumor efficacy, Int. J. Cancer 104, 243–250 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. J. Frank, D. K. Kelleher, A. Pompella, O. Thews, H. K. Biesalski, and P. Vaupel, Enhancement of oxidative cell injury and antitumor effects of localized 44°C hyperthermia upon combination with respiratory hyperoxia and xanthine oxidase, Cancer Res. 58, 2693–2698 (1998).

    PubMed  CAS  Google Scholar 

  10. T. Fotsis, Y. Zhang, M. S. Pepper, H. Adlercreutz, R. Montesano, P. P. Nawroth, and L. Schweigerer, The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth, Nature 368, 237–239 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Thews, O., Lambert, C., Kelleher, D.K., Biesalski, HK., Vaupel, P., Frank, J. (2005). Possible Protective Effects of α-Tocopherol on Enhanced Induction of Reactive Oxygen Species by 2-Methoxyestradiol in Tumors. In: Okunieff, P., Williams, J., Chen, Y. (eds) Oxygen Transport to Tissue XXVI. Advances in Experimental Medicine and Biology, vol 566. Springer, Boston, MA. https://doi.org/10.1007/0-387-26206-7_46

Download citation

Publish with us

Policies and ethics