Advertisement

Hypoxia in Breast Cancer

Role of blood flow, oxygen diffusion distances, and anemia in the development of oxygen depletion
  • Peter Vaupel
  • Arnulf Mayer
  • Susanne Briest
  • Michael Höckel
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 566)

Abstract

Heterogeneously distributed hypoxic areas are a characteristic property of locally advanced breast cancers. Hypoxia results from an imbalance between the supply and consumption of oxygen (O2). Major pathogenetic mechanisms for the emergence of hypoxia are (i) structural and functional abnormalities in the tumor microvasculature, (ii) an adverse diffusion geometry, and (iii) tumor-related and therapy-induced anemia leading to a reduced O2 transport capacity of the blood. There is pronounced intertumor variability in the extent of hypoxia, which is independent of clinical size, stage, histology and grade. Hypoxia is intensified in anemic patients, especially in tumor (areas) with low perfusion rates.

Tumor hypoxia is a therapeutic problem since it makes solid tumors resistant to sparsely ionizing radiation, some forms of chemotherapy, and photodynamic therapy. However, besides more direct mechanisms involved in the development of therapeutic resistance, there are, in addition, indirect machineries that can cause barriers to therapies. These include hypoxia-mediated alterations in gene expression, proteomic and genomic changes, and clonal selection. These in turn can drive subsequent events that are known to further increase resistance to therapy in addition to critically affecting long-term prognosis.

Keywords

Breast Cancer Tumor Hypoxia Anemic Patient Ischemic Hypoxia Tumor Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. 1.
    P. Vaupel, K. Schlenger, C. Knoop, and M. Höckel, Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements, Cancer Res. 51, 3316–3322 (1991).PubMedGoogle Scholar
  2. 2.
    P. Vaupel, S. Briest, and M. Höckel, Hypoxia in breast cancer: Pathogenesis, characterization and biological/therapeutic implications, Wien. Med. Wschr. 152, 334–342 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Hoeckel, K. Schlenger, C. Knoop, and P. Vaupel, Oxygenation of carcinomas of the uterine cervix: Evaluation of computerized O2 tension measurements, Cancer Res. 51, 6098–6102 (1991).Google Scholar
  4. 4.
    A. W. Fyles, M. Milosevic, R. Wong, M.-C. Kavanagh, M. Pintilie, A. Sun, W. Chapman, W. Levin, L. Manchul, T. J. Keane, and R. P. Hill, Oxygenation predicts radiation response and survival in patients with cervix cancer, Radiother. Oncol. 48, 149–156 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    T. H. Knocke, H.-D. Weitmann, H.-J. Feldmann, E. Selzer, and R. Potter, Intratumoral pO2-measurements as predictive assay in the treatment of carcinoma of the uterine cervix, Radiother. Oncol. 53, 99–104 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Nordsmark, and J. Overgaard, A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy, Radiother. Oncol. 57, 39–43 (2000).PubMedCrossRefGoogle Scholar
  7. 7.
    D. M. Brizel, G. S. Sibley, L. R. Prosnitz, R. L Scher, and M. W. Dewhirst, Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck, Int. J. Radial. Oncol. Biol. Phys. 38, 285–289 (1997).CrossRefGoogle Scholar
  8. 8.
    B. Movsas, J. D. Chapman, E. M. Horwitz, W. H. Pinover, R. E. Greenberg, A. L. Hanlon, R. Iyer, and G. E. Hanks, Hypoxic regions exist in human prostate carcinoma, Urology 53, 11–18 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    A. C. Koong, V. K. Mehta, Q. T. Le, G. A. Fisher, D. J. Terris, J. M. Brown, A. J. Bastidas, and M. Vierra, Pancreatic tumors show high levels of hypoxia, Int. J. Radiat. Oncol. Biol. Phys. 48, 919–922 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Rampling, G. Cruickshank, A. D. Lewis, S. A. Fitzsimmons, and P. Workman, Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors, Int. J. Radial. Oncol. Biol. Phys. 29, 427–432 (1994).Google Scholar
  11. 11.
    D. R. Collingridge, J. M. Piepmeier, S. Rockwell, and J. P. S. Knisely, Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue, Radiother. Oncol. 53, 127–131 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma, Cancer Res. 56, 941–943 (1996).PubMedGoogle Scholar
  13. 13.
    M. Nordsmark, J. Keller, O. S. Nielsen, E. Lundorf, and J. Overgaard, Tumour oxygenation assessed by polarographic needle electrodes and bioenergetic status measured by 31P magnetic resonance spectroscopy in human soft tissue tumours, Acta Oncol. 36, 565–571 (1997).PubMedGoogle Scholar
  14. 14.
    E. Lartigau, H. Randrianarivelo, M.-F. Avril, A. Margulis, A. Spatz, F. Eschwege, and M. Guichard, Intratumoral oxygen tension in metastatic melanoma, Melanoma Res. 7, 400–406 (1997).PubMedGoogle Scholar
  15. 15.
    P. Vaupel, O. Thews, and M. Höckel, Treatment resistance of solid tumors: Role of hypoxia and anemia, Med Oncol. 18, 243–259 (2001).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Vaupel, and M. Höckel, Tumor hypoxia and therapeutic resistance, in: Recombinant Human Erythropoietin (rhEPO) in Clinical Oncology, edited by M. R. Nowrousian (Springer, Berlin, Heidelberg, New York, 2002), pp. 127–146.Google Scholar
  17. 17.
    M. Höckel, and P. Vaupel, Tumor hypoxia: Definitions and current clinical, biologic and molecular aspects, J. Natl. Cancer Inst. 93, 266–276 (2001).PubMedCrossRefGoogle Scholar
  18. 18.
    G. L. Semenza, Targeting HIF-1 for cancer therapy, Nat. Rev. Cancer 3, 721–732 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    G. L. Semenza, HIF-1 and tumor progression: pathophysiology and therapeutics, Trends Mol. Med. 8, S62–S67 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    A. L. Harris, Hypoxia-a key regulatory factor in tumour growth, Nat. Rev. Cancer 2, 38–47 (2002).PubMedCrossRefGoogle Scholar
  21. 21.
    P. Vaupel, A. Mayer, and M. Höckel, Tumor hypoxia and malignant progression, Methods Enzymol. 383, 335–354 (2004).CrossRefGoogle Scholar
  22. 22.
    T. I. Goonewardene, H. M. Sowter, and A. L. Harris, Hypoxia-induced pathways in breast cancer, Microsc. Res. Tech. 59, 41–48 (2002).PubMedCrossRefGoogle Scholar
  23. 23.
    S. M. Evans, and C. J. Koch, Prognostic significance of tumor oxygenation in humans, Cancer Letters 195, 1–16 (2003).PubMedCrossRefGoogle Scholar
  24. 24.
    G. Gasparini, Prognostic value of vascular endothelial growth factor in breast cancer, Oncologist 5, 37–44 (2000).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Schindl, S. F. Schoppmann, H. Samonigg, H. Hausmaninger, W. Kwasny, M. Gnant, R. Jakesz, E. Kubista, P. Birner, and G. Oberhuber, Overexpression of hypoxia-inducible factor la is associated with an unfavorable prognosis in lymph node-positive breast cancer, Clin. Cancer Res. 8, 1831–1837 (2002).PubMedGoogle Scholar
  26. 26.
    P. N. Span, J. Bussink, P. Manders, L. V. A. M. Beex, and C. G. J. Sweep, Carbonic anhydrase-9 expression levels and prognosis in human breast cancer: association with treatment outcome, Br. J. Cancer 89, 271–276 (2003).PubMedCrossRefGoogle Scholar
  27. 27.
    S. K. Chia, C. C. Wykoff, P. H. Watson, C. Han, R. D. Leek, J. Pastorek, K. C. Gatter, P. Ratcliffe, and A. L. Harris, Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma, J. Clin. Oncol. 19, 3660–3668 (2001).PubMedGoogle Scholar
  28. 28.
    R. Bos, P. v. d. Groep, A. E. Greijer, A. Shvarts, S. Meijer, H. M. Pinedo, G. L. Semenza, P. J. v. Diest, and E. v. d. Wall, Levels of hypoxia-inducible factor-1α independently predict prognosis in patients with lymph node negative breast carcinoma, Cancer 97, 1573–1581 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    L. Tomes, E. Emberley, Y. Niu, S. Troup, J. Pastorek, K. Strange, A. Harris, and P. H. Watson, Necrosis and hypoxia in invasive breast carcinoma, Breast Cancer Res. Treat. 81, 61–69 (2003).PubMedCrossRefGoogle Scholar
  30. 30.
    M. Younes, R. W. Brown, D. R. Mody, L. Fernandez, and R. Laucirica, GLUT 1 expression in human breast carcinoma: correlation with known prognostic markers, Anticancer Res. 15, 2895–2898 (1995).PubMedGoogle Scholar
  31. 31.
    P. Vaupel, O. Thews, and M. Höckel, Tumor oxygenation: Characterization and clinical implications, in: rhErythropoietin in Cancer Supportive Treatment, edited by J. F. Smyth, M. A. Boogaerts, and B. R.-M. Ehmer (Marcel Dekker, New York, 1996), pp. 205–239.Google Scholar
  32. 32.
    P. Vaupel, F. Kallinowski, and P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review, Cancer Res. 49, 6449–6465 (1989).PubMedGoogle Scholar
  33. 33.
    P. W. Vaupel, Blood flow, oxygenation, tissue pH distribution, and bioenergetic status of tumors. Lecture 23, Berlin: Ernst Schering Research Foundation (1994).Google Scholar
  34. 34.
    P. Vaupel, and M. Höckel, Durchblutung, Oxygenierungsstatus und metabolisches Mikromilieu des Mammakarzinoms. Pathomechanismen, Charakterisierung und biologische/therapeutische Relevanz, in: Diagnostik und Therapie des Mammakarzinoms-State of the Art, edited by M. Untch, H. Sittek, I. Bauerfeind, G. Konecny, M. Reiser, H. Hepp (Zuckschwerdt, München, 2002), pp. 289–307.Google Scholar
  35. 35.
    R. P. Beaney, Positron emission tomography in the study of human tumors, Semin. Nucl. Med. 14, 324–341 (1984).PubMedGoogle Scholar
  36. 36.
    R. P. Beaney, A. A. Lammertsma, T. Jones, C. G. McKenzie, and K. E. Hainan, Positron emission tomography for in-vivo measurements of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma, Lancet 1(8369), 131–134 (1984).PubMedCrossRefGoogle Scholar
  37. 37.
    R. Johnson, A thermodynamic method for investigation of radiation induced changes in the microcirculation of human tumors, Int. J. Radiat. Oncol. Biol. Phys. 1, 659–670 (1976).PubMedGoogle Scholar
  38. 38.
    C. B. J. H. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: A rapid and noninvasive dynamic method, Cancer Res. 52, 1592–1597 (1992).PubMedGoogle Scholar
  39. 39.
    E. M. Grischke, M. Kaufmann, M. Eberlein-Gonska, T. Mattfeld, Ch. Sohn, and G. Bastert, Angiogenesis as a diagnostic factor in primary breast cancer: Microvessel quantitation by stereological methods and correlation with color Doppler sonography, Onkologie 17, 35–42 (1994).CrossRefGoogle Scholar
  40. 40.
    P. Vaupel, Vascularization, blood flow, oxygenation, tissue pH, and bioenergetic status of human breast cancer, Adv. Exp. Med. Biol. 411, 243–254 (1997).PubMedGoogle Scholar
  41. 41.
    P. Vaupel, and M. Höckel, Blood supply, oxygenation status and metabolic micromilieu of breast cancers: Characterization and therapeutic relevance, Int. J. Oncol. 17, 869–879 (2000).PubMedGoogle Scholar
  42. 42.
    C. Peters-Engl, M. Medl, M. Mirau, C. Wanner, S. Bilgi, P. Sevelda, and A. Obermair, Color-coded and spectral Doppler flow in breast carcinomas-Relationship with the tumor microvasculature, Breast Cancer Res. Treat. 47, 83–89 (1998).PubMedCrossRefGoogle Scholar
  43. 43.
    C. Peters-Engl, W. Frank, S. Leodolter, and M. Medl, Tumor flow in malignant breast tumors measured by Doppler ultrasound: an independent predictor of survival, Breast Cancer Res. Treat. 54, 65–71 (1999).PubMedCrossRefGoogle Scholar
  44. 44.
    P. Vaupel, Oxygenation of human tumors. Strahlenther. Onkol. 166, 377–386 (1990).PubMedGoogle Scholar
  45. 45.
    P. Vaupel, A. Mayer, S. Briest, and M. Höckel, Oxygenation gain factor: A novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers, Cancer Res. 63, 7634–7637 (2003).PubMedGoogle Scholar
  46. 46.
    A. Becker, P. Stadler, R. S. Lavey, G. Hänsgen, T. Kuhnt, C. Lautenschläger, H. J. Feldmann, M. Molls, and J. Dunst, Severe anemia is associated with poor tumor oxygenation in head and neck squamous cell carcinomas, Int. J. Radial Oncol. Biol. Phys. 46, 459–466 (2000).CrossRefGoogle Scholar
  47. 47.
    P. Vaupel, O. Thews, D. K. Kelleher, and M. A. Konerding, O2 extraction is a key parameter determining the oxygenation status of malignant tumors and normal tissues, Int. J. Oncol. 22, 795–798 (2003).PubMedGoogle Scholar
  48. 48.
    P. Vaupel, D. K. Kelleher, and M. Höckel, Oxygenation status of malignant tumors: Pathogenesis of hypoxia and significance for tumor therapy, Semin. Oncol. 28, 29–35 (2001).PubMedCrossRefGoogle Scholar
  49. 49.
    D. P. Bottaro, and L. A. Liotta, Out of air is not out of action, Nature 423, 593–595 (2003).PubMedCrossRefGoogle Scholar
  50. 50.
    M. Höckel, K. Schlenger, B. Aral, M. Mitze, U. Schäffer, and P. Vaupel, Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix, Cancer Res. 56, 4509–4515 (1996).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Peter Vaupel
  • Arnulf Mayer
  • Susanne Briest
  • Michael Höckel

There are no affiliations available

Personalised recommendations