The Difficulties in Comparing In Vivo Oxygen Measurements

Turning the problems into virtues
  • Harold M. Swartz
  • Jeff Dunn
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 566)


There has been rapid development of effective new tools that provide information on oxygenation in vivo and an increased recognition of how valuable such information can be. Consequently, there also has been considerable interest in comparing and evaluating the accuracy and usefulness of the different types of measurements.

The various types of measurements usually do not measure the same thing. They may measure pO2 or [O2] or something less directly related, such as hemoglobin saturation. They may make measurements in different compartments (e.g. intracellular, extracellular, vascular) in the volume that they sample, the time span over which they average, the local perturbation that they may cause, etc. They also differ in their sensitivity, accuracy, ability to measure repetitively.

However, these potentially confounding and confusing differences can be made into an outstanding virtue, if their nature is considered carefully. Then a proper model can relate them to each other. The ability to relate the various measurements to each other can be a powerful tool to test the validity of models that attempt to explain fully the distribution of oxygen in real systems and the factors that affect this. We then could have a major advancement in our understanding of oxygen transport in tissues, with an ability to determine accurately the effects of physiological and pathophysiological perturbations on oxygenation at all levels of cells and tissues in vivo.


Electron Paramagnetic Resonance Oxygen Electrode Oxygen Distribution Tumor Oxygenation Major Advancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    H. M. Swartz, and J. F. Dunn, Measurements of oxygen in tissues: overview and perspectives on methods, Adv. Exp. Med. Biol. 540, 1–12 (2003).Google Scholar
  2. 2.
    D. R. Collingridge, W. K. Young, B. Vojnovic, P. Wardman, E. M. Lynch, S. A. Hill, and D. J. Chaplin, Measurement of tumor oxygenation: a comparison between polarographic needle electrodes and a time-resolved luminescence-based optical sensor, Radiat. Res. 147, 329–334 (1997).PubMedGoogle Scholar
  3. 3.
    B. M. Seddon, D. J. Honess, B. Vojnovic, G. M. Tozer, and P. Workman, Measurement of tumor oxygenation: in vivo comparison of a luminescence fiber-optic sensor and a polarographic electrode in the p22 tumor, Radiat. Res. 155, 837–846 (2001).PubMedGoogle Scholar
  4. 4.
    R. D Braun, J. L. Lanzen, S. A. Snyder, and M. W. Dewhirst, Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents, Am. J. Physiol. Heart Circ. Physiol. 280(6), H2533–H2544 (2001).PubMedGoogle Scholar
  5. 5.
    M. C. Kavanagh, A. Sun, Q. Hu, and R. P. Hill, Comparing techniques of measuring tumor hypoxia in different murine tumors: Eppendorf pO2 histograph, [3H] misonidazole binding and paired survival assay, Radiat. Res. 145, 491–500 (1996).PubMedGoogle Scholar
  6. 6.
    D. W. Lubbers, The meaning of the tissue oxygen distribution curve and its measurement by means of Pt electrodes, Prog. Respir. Res. 3, 112–123 (1969).Google Scholar
  7. 7.
    C. I. Nwaigwe, M. A. Roche, O. Grinberg, and J. F. Dunn, Effect of hyperventilation on brain tissue oxygenation and cerebrovenous pO2 in rats, Brain Res. 868, 150–156 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    E. L. Rolett, A. Azzawi, K. J. Liu, M. N. Yongbi, H. M. Swartz, and J. F. Dunn, Critical oxygen tension in rat brain: a combined 31P-NMR and EPR oximetry study, Am. J. Physiol. 279(1), R9–R16 (2000).Google Scholar
  9. 9.
    J. F. Glockner, S.-W. Norby, and H. M. Swartz, Simultaneous measurement of intracellular and extracellular oxygen concentrations using a nitroxide-liposome system, Magn. Resort. Med. 29(1), 12–18 (1993).Google Scholar
  10. 10.
    D. T. Delpy, M. C. Cope, E. B. Cady, J. S. Wyatt, P. A. Hamilton, P. L. Hope, S. Wray, and E. O. Reynolds, Cerebral monitoring in newborn infants by magnetic resonance and near infrared spectroscopy, Scand. J. Clin. Lab. Invest. Suppl. 188, 9–17 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci. USA, 87(24), 9868–9872 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    J. F. Dunn, J. A. O’Hara, Y. Zaim-Wadghiri, H. Lei, M. E. Meyerand, O. Y. Grinberg, H. Hou, P. J. Hoopes, E. Demidenko, and H. M. Swartz, Changes in oxygenation of intracranial tumors with carbogen: a BOLD MRI and EPR oximetry study, J. Magn. Reson. Imaging 16(5), 511–521 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    T. Q. Duong, C. Iadecola, and S. G. Kim, Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow, Magn. Reson. Med. 45(1), 61–70 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    H. Lei, O. Grinberg, C. I. Nwaigwe, H. G. Hou, H. Williams, H. M. Swartz, and J. F. Dunn, The effects of ketamine-xylazine anesthesia on cerebral blood flow and oxygenation observed using nuclear magnetic resonance perfusion imaging and electron paramagnetic resonance oximetry, Brain Res. 913(2), 174–179 (2001).PubMedCrossRefGoogle Scholar
  15. 15.
    G. Bacic, T. Walczak, F. C. Demsar, and H. M. Swartz, Electron spin resonance imaging of tissues with lipid-rich areas, Magn. Res. Med. 8, 209–219 (1988).Google Scholar
  16. 16.
    D. Fiat, J. Dolinsek, J. Hankiewicz, M. Dujovny, and J. Ausman, Determination of regional cerebral oxygen consumption in the human: 17O natural abundance cerebral magnetic resonance imaging and spectroscopy in a whole body system, Neurol. Res. 15(4), 237–248 (1993).PubMedGoogle Scholar
  17. 17.
    K. J. Liu, P. Gast, M. Moussavi, S. W. Norby, N. Vahidi, T. Walczak, M. Wu, and H. M. Swartz, Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems, Proc. Natl. Acad. Sci. USA 90, 5438–5442 (1993).PubMedCrossRefGoogle Scholar
  18. 18.
    S. A. Vinogradov, L. W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors, Biophys. J. 70(4), 1609–1617 (1996).PubMedCrossRefGoogle Scholar
  19. 19.
    R. P. Mason, A. Constantinescu, S. Hunjan, D. Le, E. W. Hahn, P. P. Antich, C. Blum, and P. Peschke, Regional tumor oxygenation and measurement of dynamic changes, Radiat. Res. 152(3), 239–249 (1999).PubMedGoogle Scholar
  20. 20.
    M. C. Krishna, S. Subramanian, P. Kuppusamy, and J. B. Mitchell, Magnetic resonance imaging for in vivo assessment of tissue oxygen concentration, Semin. Radiat. Oncol. 11(1), 58–69 (2001).PubMedCrossRefGoogle Scholar
  21. 21.
    T. I. Smirnova, A. I. Smirnov, R. B. Clarkson, and R. L. Belford, Accuracy of oxygen measurements in T2 (line width) EPR oximetry, Magn. Reson. Med. 33(6), 801–810 (1995).PubMedGoogle Scholar
  22. 22.
    J. L. Zweier, S. Thompson-Gorman, and P. Kuppusamy, Measurement of oxygen concentration in the intact beating heart using electron paramagnetic resonance spectroscopy:a technique for measuring oxygen concentration in situ, J. Bioenerg. Biomembr. 23, 855–871 (1991).PubMedCrossRefGoogle Scholar
  23. 23.
    H. M. Swartz, and H. Halpern, EPR studies of living animals and related model systems (in vivo EPR), in: Spin Labeling: The Next Millennium, edited by L. J. Berliner (Plenum Publishing, New York, 1998), pp 367–404.Google Scholar
  24. 24.
    J. F. Dunn, S. Frostick, G. E. Adams, I. J. Stratford, N. Howells, G. Hogan, and G. K. Radda, Induction of tumour hypoxia by a vasoactive agent. A combined NMR and radiobiological study, FEBS Letters 249(2), 343–347 (1989).PubMedCrossRefGoogle Scholar
  25. 25.
    T. K. Tran, N. Sailasuta, U. Kreutzer, R. Hurd, Y. Chung, P. Mole, S. Kuno, and T. Jue, Comparative analysis of NMR and NIRS measurements of intracellular pO2 in human skeletal muscle, Am. J. Physiol. 276(6 Pt 2), R1682–1690 (1999).PubMedGoogle Scholar
  26. 26.
    F. Calamante, M. F. Lythgoe, G. S. Pell, D. L. Thomas, M. D. King, A. L. Busza, C. H. Sotak, S. R. Williams, R. J. Ordidge, and D. G. Gadian, Early changes in water diffusion, perfusion, T1, and T2 during focal cerebral ischemia in the rat studied at 8.5 T, Magn. Reson. Med. 41(3), 479–485 (1999).PubMedCrossRefGoogle Scholar
  27. 27.
    C. Baudelet, and B. Gallez, How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn. Reson. Med. 48(6), 980–986 (2002).PubMedCrossRefGoogle Scholar
  28. 28.
    H. M. Swartz, J. Dunn, O. Grinberg, J. O’Hara, and T. Walczak, What does EPR oximetry with solid particles measure — and how does this relate to other measures of pO2? Adv. Exp. Med. Biol. 428, 663–670 (1997).PubMedGoogle Scholar
  29. 29.
    M. W. Dewhirst, E. T. Ong, G. L. Rosner, S. W. Rehmus, S. Shan, R. D. Braun, D. M. Brizel, and T.W. Secomb, Arteriolar oxygenation in tumour and subcutaneous arterioles: effects of inspired air oxygen content, Br. J. Cancer Suppl. 27, S241–S246 (1996).PubMedGoogle Scholar
  30. 30.
    A. G. Hudetz, J. D. Wood, B. B. Biswal, I. Krolo, and J. P. Kampine, Effect of hemodilution on RBC velocity, supply rate, and hematocrit in the cerebral capillary network, J. Appl. Physiol. 87(2), 505–509 (1999).PubMedGoogle Scholar
  31. 31.
    O. Y. Grinberg, P. E. James, and H. M. Swartz, Are there significant gradients of pO2 in cells? Adv. Exp. Med. Biol. 454, 415–423 (1998).PubMedGoogle Scholar
  32. 32.
    P. Morse, and H. Swartz, Measurement of intracellular oxygen concentration using the spin label TEMPOL, Magn. Reson. Med. 2, 114–127 (1985).PubMedGoogle Scholar
  33. 33.
    A. Mayevsky, Brain NADH redox state monitored in vivo by fiber optic surface fluorometry, Brain Res. 319(1), 49–68 (1984).PubMedGoogle Scholar
  34. 34.
    D. F. Wilson, and W. L. Rumsey, Factors modulating the oxygen dependence of mitochondrial oxidative phosphorylation, Adv. Exp. Med. Biol. 222, 121–131 (1988).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Harold M. Swartz
  • Jeff Dunn

There are no affiliations available

Personalised recommendations