Exogenous and Endogenous Markers of Tumour Oxygenation Status

Definitive markers of tumour hypoxia?
  • Kaye J. Williams
  • Catriona A. Parker
  • Ian J. Stratford
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 566)


Hypoxia is a physiological abnormality that has been detected in all solid tumours analysed to date. Studies using polarographic needle electrodes have shown an unequivocal link between the extent of tumour hypoxia and poor treatment outcome. The practical limitations of polarographic needle electrodes have warranted investigation into alternative strategies enabling routine assessment of tumour hypoxia in the clinical setting. This review focuses on the clinical evaluation of exogenous and endogenous markers of tumour hypoxia that may fulfil this role.


Tumour Hypoxia Chronic Hypoxia Tumour Oxygenation Human Squamous Cell Carcinoma Hypoxic Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    L. Webster, R. J. Hodgkiss, and G. D. Wilson, Cell cycle distribution of hypoxia and progression of hypoxic tumour cells in vivo, Br. J. Cancer 77, 227–234 (1998).PubMedGoogle Scholar
  2. 2.
    R. E. Durand, and J. A. Raleigh, Identification of nonproliferating but viable hypoxic tumour cells in vivo, Cancer Res. 58, 3547–3550 (1998).PubMedGoogle Scholar
  3. 3.
    B. A. Teicher, Hypoxia and drug resistance, Cancer Metastasis Rev. 13, 39–68 (1994).CrossRefGoogle Scholar
  4. 4.
    T. G. Graeber, C. Osmanian, T. Jacks, D. E. Housman, S. J. Koch, S. W. Lowe, and A. J. Giaccia, Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours, Nature 379, 88–91 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Höckel, K. Schlenger, B. Aral, M. Mitze, U. Schaffer, and P. Vaupel, Association between tumour hypoxia and malignant progression in advanced cancer of the uterine cervix, Cancer Res. 56, 4509–4515 (1996).PubMedGoogle Scholar
  6. 6.
    R. H. Thomlinson, and L. H. Gray, The histological structure of some human lung cancers and the possible implications for radiotherapy, Br. J. Cancer 9, 539–549 (1955).PubMedGoogle Scholar
  7. 7.
    L. H. Gray, A. D. Conger, M. Ebert, S. Hornsey, and O. C. Scott, Concentration of oxygen dissolved in tissue at the time of irradiation as a factor in radiotherapy, Br. J. Radiol. 26, 638–648 (1953).PubMedCrossRefGoogle Scholar
  8. 8.
    P. Okunieff, M. Höckel, E. P. Dunphy, K. Schlenger, C. Knoop, and P. Vaupel, Oxygen tension distributions are sufficient to explain the local response of human breast tumours treated with radiation alone, Int. J. Radial. Oncol. Biol. Phys. 26, 631–636 (1993).Google Scholar
  9. 9.
    M. Höckel, C. Knoop, K. Schlenger, B. Vorndran, E. Baussmann, M. Mitze, P. G. Knapstein, and P. Vaupel, Intratumoural pO2 predicts survival in advanced cancer of the uterine cervix, Radiother. Oncol. 26, 45–50 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    A. W. Fyles, M. Milosevic, R. Wong, M. C. Kavanagh, M. Pintilie, A. Sun, W. Chapman, W. Levin, L. Manchul, T. J. Keane, and R. P. Hill, Oxygenation predicts radiation response in patients with cervix cancer, Radiother. Oncol. 48,149–156 (1998).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Nordsmark, and J. Overgaard, A confirmatory prognostic study on oxygenation status and regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy, Radiother. Oncol. 57, 39–43 (2000).PubMedCrossRefGoogle Scholar
  12. 12.
    D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, Tumour oxygenation predicts for the likelihood of distant metastasis in human soft tissue sarcoma, Cancer Res. 56, 941–943(1996).PubMedGoogle Scholar
  13. 13.
    R. A. Gatenby, H. B. Kessler, J. S. Rosenblum, L. R. Coia, P. J. Moldofsky, W. H. Hartz, and G. J. Broder, Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy, Int. J. Radiat. Oncol. Biol. Phys. 14, 831–838 (1988).PubMedGoogle Scholar
  14. 14.
    M. Höckel, K. Schlenger, S. Höckel, and P. Vaupel, Hypoxic cervical cancers with low apoptotic index are highly aggressive, Cancer Res. 59, 4525–4528 (1999).PubMedGoogle Scholar
  15. 15.
    J. Bussink, J. H. A. M. Kaanders, A. M. Strik, and A. J. van der Kogel, Effects of nicotinamide and carbogen on oxygenation in human tumour xenografts measured with luminescence based fibre optic probes, Radiother. Oncol. 57, 21–30 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    B. M. Seddon, D. J. Honess, B. Vojnovic, G. M. Tozer, and P. Workman, Measurement of tumour oxygenation: In vivo comparison of a luminescence fibre optic sensor and a polarographic electrode in the p22 tumour, Radiat. Res. 155, 837–846 (2001).PubMedGoogle Scholar
  17. 17.
    J. A. Raleigh, D. P. Calkin-Adams, L. H. Rinker, C. A. Ballenger, M. C. Weissler, W. C. Fowler, D. B. Novotny, and M. A. Varia, Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxic marker, Cancer Res. 58, 3765–3768 (1998).PubMedGoogle Scholar
  18. 18.
    S. M. Evans, S. Hahn, D. R. Pook, W. T. Jenkins, A. A. Chalian, P. Zhang, C. Stevens, R. Weber, G. Weinstein, I. Benjamin, N. Mirza, M. Morgan, S. Rubin, W. G. McKenna, E. M. Lord, and C. J. Koch, Detection of hypoxia in human squamous cell carcinoma by EF5 binding, Cancer Res. 60, 2018–2024 (2000).PubMedGoogle Scholar
  19. 19.
    J. A. Raleigh, S. C. Chou, G. E. Arteel, and M. R. Horsman, Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumours, Radiat. Res. 151, 580–589(1999).PubMedGoogle Scholar
  20. 20.
    P. L. Olive, R. E. Durand, J. A. Raleigh, C. Luo, and C. Aquino-Parsons, Comparison between the comet assay and pimonidazole binding for measuring tumour hypoxia, Br. J. Cancer 83, 1525–1531 (2000).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas, Radiother. Oncol. 67, 35–44 (2003).PubMedCrossRefGoogle Scholar
  22. 22.
    H. L. Janssen, F. J. Hoebers, D. Sprong, L. Goethals, K. J. Williams, I. J. Stratford, K. M. Haustermans, A. J. Balm, and A. C. Begg, Differentiation-associated staining with anti-pimonidazole antibodies in head and neck tumours, Radiother. Oncol. 70, 91–97 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    J. H. A. M. Kaanders, K. I. E. M. Wijffels, H. A. M. Marres, A. S. E. Ljungkvist, L. A. M. Pop, F. J. A. van den Hoogen, P. C. M. de Wilde, J. Bussink, J. A. Raleigh, and A. J. van der Kogel, Pimonidazole binding and tumour vascularity predict for treatment outcome in head and neck cancer, Cancer Res. 62, 7066–7074 (2002).PubMedGoogle Scholar
  24. 24.
    C. W. Pugh, and P. J. Ratcliffe, The von Hippel-Lindau tumour suppressor, hypoxia-inducible factor-1 (HIF-1) degradation and cancer pathogenesis, Semin. Cancer Biol. 13, 83–89 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    C. P. S. Potter, and A. L. Harris, Diagnostic, prognostic and therapeutic implications of carbonic anhydrases in cancer, Br. J. Cancer 89, 2–7 (2003).PubMedCrossRefGoogle Scholar
  26. 26.
    R. S. Haber, A. Rathan, K. R. Weiser, A. Pritsker, S. H. Itzkowitz, C. Bodian, G. Slater, A. Weiss, and D. E. Burnstein, Glut-1 glucose transporter expression in colorectal carcinoma, Cancer 83, 34–40 (1998).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Younes, R. W. Brown, M. Stephenson, M. Gondo, and P. T. Cagle, Overexpression of Glut-1 and Glut-3 in stage 1 non small cell lung carcinoma is associated with poor survival, Cancer 80, 1046–1051 (1997).PubMedCrossRefGoogle Scholar
  28. 28.
    C. C. Wycoff, N. J. P. Beasley, P. H. Watson, K. J. Turner, J. Pastorek, A. Sibtain, G. D. Wilson, H. Turley, K. L. Talks, P. H. Maxwell, C. W. Pugh, P. J. Ratcliffe, and A. L. Harris, Hypoxia-inducible expression of tumour associated carbonic anhydrases, Cancer Res. 60, 7075–7083 (2000).Google Scholar
  29. 29.
    B. L. Ebert, J. D. Firth, and P. J. Ratcliffe, Hypoxia and mitochondrial inhibitors regulate expression of glucose transporters via distinct cis-acting sequences, J. Biol. Chem. 270, 29083–29089 (1995).PubMedCrossRefGoogle Scholar
  30. 30.
    K. J. Williams, B. A. Telfer, R. E. Airley, H. P. Peters, M. R. Sheridan, A. J. van der Kogel, A. L. Harris, and I. J. Stratford, A protective role for HIF-1 in response to redox manipulation and glucose deprivation: implications for tumourigenesis, Oncogene 21, 282–290 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    J. A. Loncaster, A. L. Harris, S. E. Davidson, J. P. Logue, R. D. Hunter, C. C. Wycoff, J. Pastorek, P. J. Ratcliffe, I. J. Stratford, and C. M. L. West, Carbonic anhydrase (CAIX) expression, a potential new intrinsic marker of hypoxia: correlations with tumour oxygen measurements and prognosis in locally advanced carcinoma of the cervix, Cancer Res. 61, 6394–6399 (2001).PubMedGoogle Scholar
  32. 32.
    R. Airley, J. Loncaster, S. Davidson, M. Bromley, S. Roberts, A. Patterson, R. Hunter, I. Stratford, and C. West, Glucose transporter Glut-1 expression correlates with tumour hypoxia and predicts metastasis free survival in advanced carcinoma of the cervix, Clin. Cancer Res. 7, 928–934 (2001).PubMedGoogle Scholar
  33. 33.
    R. Airley, J. Loncaster, J. Raleigh, A. L. Harris, S. E. Davidson, R. D. Hunter, C. M. L. West, and I. J. Stratford, Glut-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding, Int. J. Cancer 104, 85–91 (2003).PubMedCrossRefGoogle Scholar
  34. 34.
    K. Wilbur, and N. Anderson, Electrometric and colorimetric determination of carbonic anhydrase, J. Biol. Chem. 176, 147–154(1948).PubMedGoogle Scholar
  35. 35.
    S. Kaluz, M. Kaluzova, and E. Stanbridge, Expression of the hypoxia marker carbonic anhydrase IX is critically dependent on SP1 activity. Identification of a novel type of hypoxia-responsive enhancer, Cancer Res. 63, 917–922 (2003).PubMedGoogle Scholar
  36. 36.
    M. Cho, H. Uemura, S-C. Kim, Y. Kawada, K. Yoshida, Y. Hirao, N. Konishi, S, Saga, and K. Yoshikawa, Hypomethylation of the MN/CA9 promoter and upregulated MN/CA9 expression in human renal cell carcinoma, Br. J. Cancer 85, 563–567 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    H. Zhong, A. M. De Marzo, E. Laughner, M. Lim, D. A. Hilton, D. Zagzag, P. Buechler, W. B. Isaacs, G. L. Semenza, and J. W. Simons, Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases, Cancer Res. 59, 5830–5835 (1999).PubMedGoogle Scholar
  38. 38.
    B. Bachtiary, M. Schindl, R. Potter, B. Dreier, T. H. Knocke, J. A. Hainfellner, R. Horvat, and P. Birner, Overexpression of hypoxia inducible factor 1α indicates diminished response to radiotherapy and unfavourable prognosis in patients receiving radical radiotherapy for cervical cancer, Clin. Cancer Res. 9, 2234–2240 (2003).PubMedGoogle Scholar
  39. 39.
    P. Burri, V. Djonov, D, Aebersold, K. Lindel, U. Studer, H. J. Altermatt, L. Mazzucchelli, R. H. Greiner, and G. Gruber, Significant correlation of hypoxia inducible factor 1α with treatment outcome in cervical cancer treated with radical radiotherapy, Int. J. Radiat. Oncol. Biol. Phys. 56, 494–501 (2003).PubMedCrossRefGoogle Scholar
  40. 40.
    D. M. Aebersold, P. Burri, K. T. Beer, J. Laissue, V. Djonov, R. H. Greiner, and G. L. Semenza, Expression of hypoxia inducible factor 1α: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer, Cancer Res. 61, 2911–2916 (2001).PubMedGoogle Scholar
  41. 41.
    D. Vordermark, and J. M. Brown, Evaluation of hypoxia inducible factor 1α (HIF-1 α) as an intrinsic marker of tumour hypoxia in U87 MG human glioblastoma: in vitro and xenograft studies, Int. J. Radiat. Oncol. Biol. Phys. 56, 1184–1193 (2003).PubMedCrossRefGoogle Scholar
  42. 42.
    V. Vukovic, H. K. Haugland, T. Nicklee, A. J. Morrison, and D. W. Hedley, Hypoxia inducible factor 1α is an intrinsic marker for hypoxia in cervical cancer xenografts, Cancer Res. 61, 7394–7398 (2001).PubMedGoogle Scholar
  43. 43.
    H. K. Haugland, V. Vukovic, M. Pintilie, A.W. Fyles, M. Milosevic, R. P. Hill, and D. W. Hedley, Expression of hypoxia inducible factor 1αin cervical carcinomas: correlation with tumour oxygenation, Int. J. Radiat. Oncol. Biol. Phys. 53, 854–861 (2002).PubMedCrossRefGoogle Scholar
  44. 44.
    H. L. K. Janssen, K. M. G. Haustermans, D. Sprong, G. Blommestijn, I. Hofland, F. J. Hoebers, E. Blijweert, J. A. Raleigh, G. L. Semenza, M. A. Varia, A. J. Balm, M-L. F. van Velthuysen, P. Delaere, R. Sciot, and A. C. Begg, HIF-1A, pimonidazole and iododeoxyuridine to estimate hypoxia and perfusion in human head and neck tumors, Int. J. Radiat. Oncol. Biol. Phys. 54, 1537–1549 (2002).PubMedCrossRefGoogle Scholar
  45. 45.
    P. H. Maxwell, M. S. Wiesener, G-W. Chang, S. C. Clifford, E. C. Vaux, M. E. Cockman, C. C. Wycoff, C. W. Pugh, E. R. Maher, and P. J. Ratcliffe, The tumour suppressor protein VHL targets hypoxia inducible factors for oxygen-dependent proteolysis, Nature 399, 271–275 (1999).PubMedCrossRefGoogle Scholar
  46. 46.
    E. Laughner, P. Taghavi, K. Chiles, P. C. Mahon, and G. L. Semenza, HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression, Mol. Cell Biol. 21, 3995–4004 (2001).PubMedCrossRefGoogle Scholar
  47. 47.
    D. Lando, J. J. Gorman, M. L. Whitelaw, and D. J. Peet, Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation, Eur. J. Biochem. 270, 781–790 (2003).PubMedCrossRefGoogle Scholar
  48. 48.
    M. Ema, K. Hirota, J. Mimura, H. Abe, J. Yodoi, K. Sogawa, L. Poellinger, and Y. Fujii-Kuriyama, Molecular mechanisms of transcription activation by HLF and HIF1 alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300, EMBO J. 18, 1905–1914 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Kaye J. Williams
  • Catriona A. Parker
  • Ian J. Stratford

There are no affiliations available

Personalised recommendations