Skip to main content

Cerebral Oxygenation During Repetitive Apnea in Newborn Piglets

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 566))

Abstract

This study examined the effect of repetitive apnea on brain oxygen pressure in newborn piglets. Each animal was given 10 episodes of apnea, initiated by disconnecting them from the ventilator and completed by reconnecting them to the ventilation circuit. The apneic episodes were ended 30 sec after the heart rate reached the bradycardic threshold of 60 beats per min. The oxygen pressure in the microvasculature of the cortex was measured by oxygen-dependent quenching of the phosphorescence. In all experiments, the blood pressure, body temperature, and heart rate were continuously monitored. Arterial blood samples were taken throughout the experiment and the blood pH, PaO2 and PaCO2 were measured.

During pre-apnea, cortical oxygen was 55.1 ± 6.4 (SEM, n = 7) mm Hg and decreased during each apnea to 8.1 ± 2.8 mm Hg. However, the values of cortical oxygen varied during recovery periods. Maximal oxygen levels during recovery from the first two apneic episodes were 76.8 ± 12 mm Hg and 69.6 ± 9 mm Hg, respectively, values higher than pre-apnea. Cortical oxygen pressure then progressively decreased following consequent apnea.

In conclusion, the data show that repetitive apnea caused a progressive decrease in cortical oxygen levels in the brain of newborn piglets. This deficit in brain oxygenation can be at least partly responsible for the neurological side effects of repetitive apnea.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Barrington, and N. Finer, The natural history of the appearance of apnea of prematurity, Pediatr. Res. 29, 372–375 (1991).

    PubMed  CAS  Google Scholar 

  2. R. J. Martin, M. B. Miller, and W. A. Carlo, Pathogenesis of apnea in preterm infants, J. Pediatr. 109, 733–741 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. A. Pastuszko, S. N. Lajevardi, J. Chen, O. Tammela, D. F. Wilson, and M. Delivoria-Papadopoulos, Effects of graded levels of tissue oxygen pressure on dopamine metabolism in striatum of newborn piglets, J. Neurochem. 60, 161–166 (1993).

    PubMed  CAS  Google Scholar 

  4. A. Pastuszko, Metabolic responses of the dopaminergic system during hypoxia in newborn brain, Biochem. Med. Metab. Biol. 51, 1–15 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. M. Yonetani, Ch-Ch. Huang, N. Lajevardi, A. Pastuszko, M. Delivoria-Papadopoulos, and D. F. Wilson, Effect of hemorrhagic hypotension on extracellular level of dopamine, cortical oxygen pressure and blood flow in brain of newborn piglets, Neurosci. Lett. 180, 247–252 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. M. Olano, D. Song, S. Murphy, D. F. Wilson, and A. Pastuszko, Relationships of dopamine, cortical oxygen pressure, and hydroxyl radicals in brain of newborn piglets during hypoxia and posthypoxic recovery, J. Neurochem. 65, 1205–1212 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. W. M. DeCampli, G. Schears, R. Myung, S. Schultz, J. Creed, A. Pastuszko, and D. F. Wilson, Tissue oxygen tension during regional low flow perfusion in neonates, J. Thorac. Cardiovasc. Surg. 125(3 Pt 1), 472–480 (2003).

    Article  PubMed  Google Scholar 

  8. S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dugan, and D. F. Wilson, Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples, Rev. Sci. Inst. 72(8), 3396–3306 (2001).

    Article  CAS  Google Scholar 

  9. I. B. Rietveld, E. Kim, and S. A. Vinogradov, Dendrimers with tetrabenzoporphyrin cores: near infrared phosphors for in vivo oxygen imaging, Tetrahedron 59(22), 3821–3831 (2003).

    Article  CAS  Google Scholar 

  10. I. Dunphy, S. A. Vinogradov, and D. F. Wilson, Oxyphor R2 and G2: Phosphors for measuring oxygen by oxygen dependent quenching of phosphorescence, Analy. Biochem. 310, 191–198 (2002).

    Article  CAS  Google Scholar 

  11. R. A. Jones, and D. Lukeman, Apnea of immaturity. 2. Mortality and handicap, Arch. Dis. Child 57, 766–768 (1982).

    PubMed  CAS  Google Scholar 

  12. G. A. Levitt, A. Mushin, S. Bellman, and D. R. Harvey, Outcome of preterm infants who suffered neonatal apneic attack, Early Human Dev. 16, 235–243 (1988).

    Article  CAS  Google Scholar 

  13. N. R. Kreisman, T. J. Sick, and M. Rosenthal, Importance of vascular responses in determining cortical oxygenation during recurrent paroxysmal events of varying duration and frequency of repetition, J. Cereb. Blood Flow Metab. 3, 330–338 (1983).

    PubMed  CAS  Google Scholar 

  14. S. Tomida, T. S. Nowak, K. Vass, J. M. Lohr, and I. Klatzo, Experimental model of repetitive ischemic attacks in the gerbil, J. Cereb. Blood Flow Metab. 7, 773–782 (1987).

    PubMed  CAS  Google Scholar 

  15. E. C. Mallard, C. E. Williams, A. J. Gunn, M. I. Gunning, and P. D. Gluckman, Frequent episodes of brief ischemia sensitize the fetal sheep brain to neuronal loss and induce striatal injury, Pediatr. Res. 33(1), 61–65 (1993).

    PubMed  CAS  Google Scholar 

  16. V. Fellman, and K. O. Raivio, Reperfusion injury as the mechanism of brain damage after perinatal asphyxia, Pediatr. Res. 41, 599–606 (1997).

    PubMed  CAS  Google Scholar 

  17. C. Palmer, Hypoxic-ischemic encephalopathy. Therapeutic approaches against microvascular injury, and role of neutrophils, PAF, and free radicals, Clin. Perinatal. 22, 481–517 (1995).

    CAS  Google Scholar 

  18. A. A. Rosenberg, E. Murdaugh, and C. W. White, The role of oxygen free radicals in postasphyxia cerebral hypoperfusion in newborn lambs, Pediatr. Res. 26, 215–219 (1989).

    PubMed  CAS  Google Scholar 

  19. B. R. Karlsson, B. Grögaard, B. Gerdin, and P. A. Steen, The severity of postischemic hypoperfusion increases with duration of cerebral ischemia in rats, Acta Anaesthesiol. Scand. 38, 248–253 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. R. Pluta, A. S. Lossinsky, H. M. Wisniewski, and M. J. Mossakowski, Early blood-brain barrier changes in the rat following transient complete cerebral ischemia induced by cardiac arrest, Brain Res. 633, 41–52(1994).

    Article  PubMed  CAS  Google Scholar 

  21. C. K. Petito, W. A. Pulsinelli, G. Jacobson, and F. Plum, Edema and vascular permeability in cerebral ischemia: Comparison between ischemic neuronal damage and infarction, J. Neuropathol. Exp. Neurol. 41, 423–436(1982).

    PubMed  CAS  Google Scholar 

  22. R. L. Zhang, M. Chopp, H. Chen, and J. H. Garcia, Temporal profile of ischemic tissue damage, neutrophil response and vascular plugging following permanent and transient middle cerebral artery occlusion in the rat, J. Neurol. Sci. 125, 3–10 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. W. S. Thomas, E. Mori, B. R. Copeland, J. Q. Yu, J. H. Morrissey, and G. J. del Zoppo, Tissue factor contributes to microvascular defects after focal cerebral ischemia, Stroke 24, 847–854 (1993).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Schears, G., Creed, J., Zaitseva, T., Schultz, S., Wilson, D.F., Pastuszko, A. (2005). Cerebral Oxygenation During Repetitive Apnea in Newborn Piglets. In: Okunieff, P., Williams, J., Chen, Y. (eds) Oxygen Transport to Tissue XXVI. Advances in Experimental Medicine and Biology, vol 566. Springer, Boston, MA. https://doi.org/10.1007/0-387-26206-7_1

Download citation

Publish with us

Policies and ethics