Skip to main content

Experimental Absence Versus Amygdaloid Kindling

  • Conference paper
Kindling 6

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 55))

Abstract

Neural mechanisms underlying convulsive events are believed to be distinctly different from those of absence seizures.1 Typical absence epilepsy has been suggested to be related to a predominance of inhibitory activity, in contrast to generalized or focal convulsive seizures where an excess of excitatory activity is present.2 Likewise, drugs that exacerbate seizure activity, clinically and in animal models, support the hypothesis concerning distinct differences between convulsive and non-convulsive epileptic events. It has long been known that carbamazepine, oxcarbazepine and phenytoin are successfully used in the treatment of partial and secondary generalized seizures, whereas typical absence seizures are clearly exacerbated by carbamazepine and phenytoin.3, 4 Similarly, despite the fact that vigabatrin is a highly effective anticonvulsive agent against partial seizures,5 two patients with idiopathic generalized absence epilepsy in whom vigabatrin increased the frequency and severity of absence and absence status were reported by Panayiotopoulos et al.6 On the other hand, absence seizures in both animal models and humans respond to ethosuximide and trimethadion, which are ineffective against partial seizures.3, 7 Models of convulsive events as well as non-convulsive seizures offer several unique opportunities to understand the pathophysiology of epileptogenesis in animals and perhaps, by extrapolation, in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. J. Engel, Excitation and inhibition in epilepsy, Can. J. Neurol. Sci. 23, 167–174 (1996).

    PubMed  Google Scholar 

  2. J. P. A. Manning, D A Richards, and N G Bowery, Pharmacology of absence epilepsy, TIPS 24(10), 542–549 (2004)

    Google Scholar 

  3. B. J. Wilder and J. Bruni, in. Antiepileptic Drugs, fifth edition, edited by R. H. Levy, R H. Mattson, B S. Meldrum, and E. Perruca (Lippincott Williams and Wilkins, Philadelphia, 2002).

    Google Scholar 

  4. W. D. Shieds and E. Saslow, Myoclonic, atonic and absence seizures following institution of carbamazepine therapy in children, Neurology 33, 1487–1489 (1983).

    Google Scholar 

  5. S. M. Grant and R. C. Heel, Vigabatrin: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in epilepsy and disorders of motor control, Drugs 41, 889–926 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. C. P. Panayiotopoulos, A. Agathonikou, I. Sharoqi, and A. P. Parker, Vigabatrin aggravates absences and absence status, Neurology 49, 1467 (1997)

    PubMed  CAS  Google Scholar 

  7. S. L. Moshe and N. Ludvig, in: Recent Advances in Epilepsy, edited by T. A. Pedley and B. S. Meldrum (Churchill Livingstone, New York, 1988), pp. 21–44.

    Google Scholar 

  8. D. C McIntyre, M. O. Poulter, and K. Gilby, Kindling: some old and some new, Epilepsy Res. 50, 79–92 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. R. J. Racine, Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32, 281–94 (1972).

    Article  PubMed  CAS  Google Scholar 

  10. G.V. Goddard, Development of epileptic seizures through brain stimulation at low intensity, Nature 214, 1020–1021 (1967).

    Article  PubMed  CAS  Google Scholar 

  11. M. Vergnes, C. Marescaux, A. Depaulis, G. Micheletti, and J. M. Waiter, Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit mal-like seizures, Exp Neurol. Apr; 96(1), 127–136 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. L. Danober, C. Deransart, A. Depaulis, M. Vergnes, and C. Marescaux, Pathophysiological mechanisms of genetic absence epilepsy in the rat. Progr. Neurobiol. 55, 27–57. (1998).

    Article  CAS  Google Scholar 

  13. G Paxinos and C Watson, in The Rat Brain in Stereotaxic Coordinates, 4th edition, (Academic Press, San Diego, California, 1998).

    Google Scholar 

  14. E. Eşkazan, F. Y. Onat, R. Aker, and G Öner, Resistance to propagation of amygdaloid kindling seizures in rats with genetic absence epilepsy, Epilepsia 43(10), 1115–1119 (2002).

    Article  PubMed  Google Scholar 

  15. A. Nehlig, M. Vergnes, S. Boyet, and C. Marescaux, Local cerebral glucose utilization in adult and immature GAERS, Epilepsy Res. 32, 206–212 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. S. Sirvanci, C. Meshul, F. Onat, and T. San, Immunocytochemical analysis of glutamate and GABA in hippocampus of genetic absence epilepsy rats (GAERS), Brain Res. 988, 180–188 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. D. A. Richards, L. A. Morrone, and N.G. Bowery, Hippocampal extracellular amino acids and EEG spectral analysis in a genetic rat model of absence epilepsy, Neuropharmacology 39, 2433–2441 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. R. M. Cassidy and K. Gale, Mediodorsal thalamus plays a critical role in the development of lumbic motor seizures, J. Neurosci. 18, 9002–9009 (1998).

    PubMed  CAS  Google Scholar 

  19. M. R. Sperling, R.C. Gur, and A. Alavi, Subcortical metabolic alterations in partial epilepsy, Epilepsia 31, 145–155 (1990).

    PubMed  CAS  Google Scholar 

  20. E. H. Bertram, D. X. Zhang, P. Mangan, N. Fountain and D. Rempe, Functional anatomy of limbic epilepsy: a proposal for central synchronization of a diffusely hyperexcitable network, Epilepsy Res. 32, 194–205 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. C. Juhasz, F. Nagy, and C. Watson, Glucose and [C-11]flumazenil positron emission tomography abnormalities thalamic nuclei in temporal lobe epilepsy, Neurology 53, 2037–45 (1999).

    PubMed  CAS  Google Scholar 

  22. Z. Nanobashvili, T. Chachua, A. Nanobashvili, I. Bilanishvili, O. Lindvall, and Z. Kokaia, Suppression of limbic motor seizures by electrical stimulation in thalamic reticular nucleus, Exp. Neurol. 181, 224–230 (2003).

    Article  PubMed  Google Scholar 

  23. F Velasco, M. Velasco, F Jimenez, A. L. Velasco, B. Rojas, and M. L. Perez, Centromedian nucleus stimulation for epilepsy Clinical, electroencephalographic, and behavioral observations, Thalamus & Related Systems 1, 387–398, (2002).

    Article  Google Scholar 

  24. R. J. Racine, M. Steingart, and D C. McIntyre, Development of kindling-prone and kindling-resistant rats: selective breeding and electrophysiological studies, Epilepsy Res. 35, 183–195 (1999)

    Article  PubMed  CAS  Google Scholar 

  25. D. C. McIntyre, M. E. Kelly, and C Dufresne, FAST and SLOW amygdala kindling rat strains: comparison of amygdala, hippocampal, piriform and perirhinal cortex kindling, Epilepsy Res 35, 197–209,(1999).

    CAS  Google Scholar 

  26. R. J. Racine, M. Steingart, Y. Bureau, and D. C. McIntyre, Differential sensitivity of genetically Fast vs. Slow kindling rats strains to GABAergic convulsive agents, Neuropharmacology 45, 918–924 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. M. Vergnes, A. Boehrer, S Reibel, S Simler, and M. Marescaux, Selective susceptibility to inhibitors of GABA synthesis and antagonists of GABAA receptor in rats with genetic absence-like epilepsy, Exp. Neurol. 161, 714–723 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. T. E. Albertson, S. L. Peterson, and L. G. Stark, Anticonvulsant drugs and their antagonism of kindled amygdaloid seizures in rats, Neuropharmacology 19, 643–652 (1980).

    Article  PubMed  CAS  Google Scholar 

  29. P. S Albright and W. McIntyre Burnham, Development of a new pharmacological seizure model: Effects of anticonvulsants on cortical-and amygdala-kindled seizures in the rat, Epilepsia 21, 681–689 (1980).

    Article  PubMed  CAS  Google Scholar 

  30. D. A. Richards, J. P. A. Manning, D. Barnes, L. Rombola, N. G. Bowery, S. Caccia, N. Leresche, and V. Crunelli, Targeting thalamic nuclei is not sufficient for the full anti-absence action of ethosuximide in a rat model of absence epilepsy, Epilepsy Res. 54, 97–107 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Onat, F.Y., Eşkazan, E., Aker, R. (2005). Experimental Absence Versus Amygdaloid Kindling. In: Corcoran, M.E., Moshé, S.L. (eds) Kindling 6. Advances in Behavioral Biology, vol 55. Springer, Boston, MA. https://doi.org/10.1007/0-387-26144-3_5

Download citation

Publish with us

Policies and ethics