Skip to main content
Book cover

Kindling 6 pp 229–240Cite as

Kindling, Neurotrophins and Axon-Guidance Factors

  • Conference paper
  • 585 Accesses

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 55))

Abstract

Graham Goddard1 initially introduced kindling as a model for memory. Although most frequently utilized as an epilepsy model, particularly for temporal lobe epilepsy, kindling is occasionally used as a model for drug-induced plasticity, slowly developing neuropathologies other than epilepsy, and a variety of structural reorganizations of brain circuitry.2,3 Since our interest in the kindling phenomenon (and other models of epilepsy) is largely driven by our interest in neural plasticity, we have chosen to focus on kindling-induced neuronal reorganization. These kindling-induced effects may not have much relevance for epilepsy, but they are themselves interesting and potentially important phenomena and provide an excellent model for the study of mechanisms of activity-dependent neural growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. G.V. Goddard, Development of epileptic seizures through brain stimulation at low intensity, Nature 214, 1020–1021 (1967).

    Article  PubMed  CAS  Google Scholar 

  2. K. Morimoto, M. Fahnestock, and R.J. Racine, Kindling and status epilepticus models of epilepsy: rewiring the brain, Pro. Neurobiol., in press. (2004).

    Google Scholar 

  3. R. E. Adamec, Partial kindling and behavioral pathologies, Int. Rev. Neurobiol. 45, 409–434 (2001).

    PubMed  CAS  Google Scholar 

  4. T. Sutula, H. Xiao-Xian, J. Cavazos, and G. Scott, Synaptic reorganization in the hippocampus induced by abnormal functional activity, Science 239, 1147–1150 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. S. Li, I. Reinprecht, M. Fahnestock, and R. J. Racine, Activity-dependent changes in synaptophysin immunoreactivity in hippocampus, piriform cortex, and entorhinal cortex of the rat, Neuroscience 115, 1221–1229 (2002a).

    Article  PubMed  CAS  Google Scholar 

  6. D. P. Woldbye, T. G. Bolwig, J. Kragh, and O. S. Jorgensen, Synaptic degeneration and remodelling after fast kindling of the olfactory bulb, Neurochem. Res. 21, 585–593 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. B. Adams, M. Lee, M. Fahnestock, and R. J. Racine, Long-term potentiation trains induce mossy fiber sprouting, Brain Res. 775, 193–197 (1997a).

    Article  PubMed  CAS  Google Scholar 

  8. J.E. Schwob T. Fuller, J.L. Price, J.W. Olney, Widespread patterns of neuronal damage following systemic or intra-cerebral injections of kainic acid — a histological study, Neuroscience 5, 991–1014 (1980).

    Article  PubMed  CAS  Google Scholar 

  9. J.E. Cavazos, I. Das, T.P. Sutula, Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures. J. Neurosci. 14, 3106–3121 (1994)

    PubMed  CAS  Google Scholar 

  10. J.J. Ramirez, S.P. Findlestein, J. Keller, W. Abrams, M. N. George, and T. Parackh, Basic fibroblast growth factor enhances axonal sprouting after cortical injury in rats, NeuroReport 10, 1201–1204 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. M. Mikkonen, H. Soininen, R. Kalvianen, T. Tapiola, A. Ylinen, M. Vapalahti, L. Paljarvi, and A. Pitkanen, Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex, Ann. Neurol. 44, 923–934 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. B. Xu, B. Michalski, R. J. Racine, and M. Fahnestock, The effects of brain-derived neurotrophic factor (BDNF) administration on kindling induction, Trk expression and seizure-related morphological changes, Neuroscience, in press (2004).

    Google Scholar 

  13. M.L. Escobar, E.J. Barea-Rodriguesz, BE. Derrick, J.A. Reyes, and J.L. Martinez Jr., Opioid receptor modulation of mossy fiber synaptogenesis: independence from long-term potentiation, Brain Res. 751, 330–335 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. B. Kolb, and I.Q. Whishaw, Brain plasticity and behavior, Annu. Rev. Psychol. 49, 43–64 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. E. J. Huang, and L. F. Reichardt (2001), Neurotrophins: roles in neuronal development and function, Annu. Rev. Neurosci. 24, 677–736 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. Airaksinen, M. S., and Saarma, M., The GDNF family: signalling, biological functions and therapeutic value, Nature Rev. Neurosci. 3, 383–394 (2002).

    Article  CAS  Google Scholar 

  17. P. Ernfors, J. Bengzon, Z. Kokaia, H. Persson, and O. Lindvall, Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis, Neuron 7, 165–176 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. J. Bengzon, S. Soderstrom, Z. Kokaia, M. Kokaia, P. Ernfors, H. Persson, T. Ebendal, and O. Lindvall, Widespread increase of nerve growth factor protein in the rat forebrain after kindling-induced seizures,. Brain Res. 587, 338–342 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. T. Funabashi, H. Sasaki, and F. Kimura, Intraventricular injection of antiserum to nerve growth factor delays the development of amygdaloid kindling, Brain Res. 458, 132–136 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. C. E. Van der Zee, K. Rashid, K. Le, K. A. Moore, J. Stanisz, J. Diamond, R. J. Racine, and M. Fahnestock, Intraventricular administration of antibodies to nerve growth factor retards kindling and blocks mossy fiber sprouting in adult rats, J. Neurosci. 15, 5316–5323 (1995).

    PubMed  Google Scholar 

  21. B. Adams, M. Sazgar, P. Osehobo, C. E. Van der Zee, J. Diamond, M. Fahnestock, and R. J. Racine, Nerve growth factor accelerates seizure development, enhances mossy fiber sprouting, and attenuates seizure-induced decreases in neuronal density in the kindling model of epilepsy, J. Neurosci. 17, 5288–5296 (1997b).

    PubMed  CAS  Google Scholar 

  22. S. Reibel, Y. Larmet, B. T. Le, J. Carnahan, C. Marescaux, and A. Depaulis, Brain-derived neurotrophic factor delays hippocampal kindling in the rat, Neuroscience 100, 777–788 (2000a).

    Article  PubMed  CAS  Google Scholar 

  23. K. Rashid, C. E. Van der Zee, G. M. Ross, C. A. Chapman, J. Stanisz, R. J. Riopelle, R. J. Racine, and M. Fahnestock, A nerve growth factor peptide retards seizure development and inhibits neuronal sprouting in a rat model of epilepsy, Proc Natl Acad Sci U S A 92, 9495–9499 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. S. Li, H. U. Saragovi, H. Nedev, R. J. Racine, and M. Fahnestock, Differential actions of nerve growth factor receptors TrkA and p75NTR in a rat model of epilepsy, Submitted.

    Google Scholar 

  25. S. Li, H. U. Saragovi, R. J. Racine, and M. Fahnestock, A ligand of the p65/p95 receptor suppresses perforant path kindling, kindling-induced mossy fiber sprouting, and hilar area changes in adult rats, Neuroscience 119, 1147–1156 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. P.A. Lapchak, D.M. Arujo, S. Carswell, and F. Hefti, Distribution of [125I]nerve growth factor in the rat brain following a single intraventricular injection: correlation with the topographical distribution of trkA messenger RNA-expressing cells, Neuroscience 54, 445–460 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. V. Westerberg, and M. E. Corcoran, Antagonism of central but not peripheral cholinergic receptors retards amygdala kindling in rats, Exp. Neurol. 95, 194–206 (1987).

    Article  PubMed  CAS  Google Scholar 

  28. B. Adams, L. Vaccarella, M. Fahnestock, and R. J. Racine, The cholinergic system modulates kindling and kindling-induced mossy fiber sprouting, Synapse 44, 132–138 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. F. Hefti, A. Dravid, and J. Hartikka, Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions, Brain Res. 293, 305–309 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. B. Knusel, J.W. Winslow, A. Rosenthal, L.E. Burton, D.P., Seid, K. Nikolics, and F. Hefti, Promotion of central cholineregic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin-3, Proc. Natl. Acad. Sci. U. S. A. 88, 961–965 (1996).

    Article  Google Scholar 

  31. F. Barnabe-Heider, and F. D. Miller, Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways, J. Neurosci. 23, 5149–5160 (2003).

    PubMed  CAS  Google Scholar 

  32. J. P. Merlio, P. Emfors, Z. Kokaia, D. S. Middlemas, J. Bengzon, M. Kokaia, M. L. Smith, B. K. Siesjo, T. Hunter, O. Lindvall, and et al. Increased production of the TrkB protein tyrosine kinase receptor after brain insults, Neuron 10, 151–164 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. B. Xu, B. Michalski, R. J. Racine, and M. Fahnestock, Continuous infusion of neurotrophin-3 triggers sprouting, decreases the levels of TrkA and TrkC, and inhibits epileptogenesis and activity-dependent axonal growth in adult rats, Neuroscience 115, 1295–1308 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. H. Kang, and E. M. Schuman, Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus, Science 267, 1658–1662 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. M. McLean Bolton, A. J. Pittman, and D. C. Lo, Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures, J. Neurosci. 20, 3221–3232 (2000).

    CAS  PubMed  Google Scholar 

  36. S. D. Croll, C. Suri, D. L. Compton, M. V. Simmons, G. D. Yancopoulos, R. M. Lindsay, S. J. Wiegand, J. S. Rudge, and H. E. Scharfman, Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex, Neuroscience 93, 1491–1506 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. H. E. Scharfman, J. H. Goodman, A. L. Sollas, and S. D. Croll, Spontaneous limbic seizures after intrahippocampal infusion of brain-derived neurotrophic factor, Exp. Neurol. 174, 201–214 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. M. Kokaia, P. Ernfors, Z. Kokaia, E. Elmer, R. Jaenisch, and O. Lindvall, Suppressed epileptogenesis in BDNF mutant mice, Exp. Neurol. 133, 215–224 (1995).

    Article  PubMed  CAS  Google Scholar 

  39. S. Lahteinen, A. Pitkanen, T. Saarelainen, J. Nissinen, E. Koponen, and E. Castren, Decreased BDNF signalling in transgenic mice reduces epileptogenesis, Eur. J. Neurosci. 15, 721–734 (2002).

    Article  PubMed  Google Scholar 

  40. P. Osehobo, B. Adams, M. Sazgar, Y. Xu, R. J. Racine, and M. Fahnestock, Brain-derived neurotrophic factor infusion delays amygdala and perforant path kindling without affecting paired-pulse measures of neuronal inhibition in adult rats, Neuroscience 92, 1367–1375 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. Y. Larmet, S. Reibel, J. Carnahan, H. Nawa, C. Marescaux, and A. Depaulis, Protective effects of brain-derived neurotrophic factor on the development of hippocampal kindling in the rat, Neuroreport 6, 1937–1941 (1995).

    PubMed  CAS  Google Scholar 

  42. S. Reibel, Y. Larmet, J. Carnahan, C. Marescaux, and A. Depaulis, Endogenous control of hippocampal epileptogenesis: a molecular cascade involving brain-derived neurotrophic factor and neuropeptide Y, Epilepsia 41Suppl 6, S127–133 (2000b).

    Article  PubMed  Google Scholar 

  43. X. Qiao, C. Suri, B. Knusel, and J. L. Noebels, Absence of hippocampal mossy fiber sprouting in transgenic mice overexpressing brain-derived neurotrophic factor, J. Neurosci. Res. 64, 268–276 (2001).

    Article  PubMed  CAS  Google Scholar 

  44. R. Katoh-Semba, Y. Kaisho, A. Shintani, M. Nagahama, and K. Kato, Tissue distribution and immunocytochemical localization of neurotrophin-3 in the brain and peripheral tissues of rats, J. Neurochem. 66, 330–337 (1996).

    Article  PubMed  CAS  Google Scholar 

  45. J. Bengzon, Z. Kokaia, P. Ernfors, M. Kokaia, G. Leanza, O. G. Nilsson, H. Persson, and O. Lindvall, Regulation of neurotrophin and trkA, trkB and trkC tyrosine kinase receptor messenger RNA expression in kindling, Neuroscience 53, 433–446. (1993).

    Article  PubMed  CAS  Google Scholar 

  46. E. Elmer, M. Kokaia, P. Ernfors, I. Ferencz, Z. Kokaia, and O. Lindvall, Suppressed kindling epileptogenesis and perturbed BDNF and TrkB gene regulation in NT-3 mutant mice, Exp. Neurol. 145, 93–103 (1997a).

    Article  PubMed  CAS  Google Scholar 

  47. P. A. Lapchak, P. J. Miller, and S. Jiao, Glial cell line-derived neurotrophic factor induces the dopaminergic and cholinergic phenotype and increases locomotor activity in aged Fischer 344 rats, Neuroscience 77, 745–752 (1997).

    Article  PubMed  CAS  Google Scholar 

  48. Z. Kokaia, M S. Airaksinen, A. Nanobashvili, E. Larsson, E. Kujamaki, O. Lindvall, and M. Saarma, GDNF family ligands and receptors are differentially regulated after brain insults in the rat, Eur. J. Neurosci. 11, 1202–1216 (1999).

    Article  PubMed  CAS  Google Scholar 

  49. A. Nanobashvili, M. S. Airaksinen, M. Kokaia, J. Rossi, F. Asztely, K. Olofsdotter, P. Mohapel, M. Saarma, O. Lindvall, and Z. Kokaia, Development and persistence of kindling epilepsy are impaired in mice lacking glial cell line-derived neurotrophic factor family receptor alpha 2, Proc Natl Acad Sci U S A 97, 12312–12317 (2000).

    Article  PubMed  CAS  Google Scholar 

  50. D. Martin, G. Miller, M. Rosendahl, and D. A. Russell, Potent inhibitory effects of glial derived neurotrophic factor against kainic acid mediated seizures in the rat, Brain Res. 683, 172–178 (1995).

    Article  PubMed  CAS  Google Scholar 

  51. S. Li, B. Xu, D. Martin, R. J. Racine, and M. Fahnestock, Glial cell line-derived neurotrophic factor modulates kindling and activation-induced sprouting in hippocampus of adult rats, Exp. Neurol. 178, 49–58 (2002b).

    Article  PubMed  CAS  Google Scholar 

  52. K. Sato, K. Kashihara, K. Morimoto, and T. Hayabara, Regional increases in brain-derived neurotrophic factor and nerve growth factor mRNAs during amygdaloid kindling, but not in acidic and basic growth factor mRNAs, Epilepsia 37, 6–14 (1996).

    Article  PubMed  CAS  Google Scholar 

  53. G. Bregola, L. Frigati, S. Zucchini, and M. Simonato, Different patterns of induction of fibroblast growth factor-2 and brain-derived neurotrophic factor messenger RNAs during kindling epileptogenesis, and development of a herpes simplex vector for fibroblast growth factor-2 gene transfer in vivo, Epilepsia 41Suppl 6, S122–126 (2000).

    Article  PubMed  Google Scholar 

  54. B. Xu, D. C. McIntyre, M. Fahnestock, and R. J. Racine, Strain differences affect the induction of status epilepticus and seizure-induced morphological changes, Eur. J. Neurosci. in press (2004).

    Google Scholar 

  55. J. G. Flanagan, and P. Vanderhaeghen, The ephrins and Eph receptors in neural development, Annu. Rev. Neurosci. 21, 309–345. (1998).

    Article  PubMed  CAS  Google Scholar 

  56. K. Kullander, and R. Klein, Mechanisms and functions of Eph and ephrin signalling, Nature Rev. Mol. Cell. Biol. 3, 475–486 (2002).

    Article  CAS  Google Scholar 

  57. B. Xu, S. Li, A. Brown, R. Gerlai, M. Fahnestock, and R. J. Racine, EphA axon guidance molecules regulate neuronal plasticity and activity-dependent axonal growth in adult CNS, Mol. Cell. Neurosci. 24, 984–999 (2003).

    Article  PubMed  CAS  Google Scholar 

  58. S. Shimakawa, S. Suzuki, R. Miyamoto, K. Takitani, K. Tanaka, T. Tanabe, E. Wakamiya, F. Nakamura, M. Kuno, S. Matsuura, Y. Watanabe, and H. Tamai, Neuropilin-2 is overexpressed in the rat brain after limbic seizures, Brain Res. 956, 67–73 (2002).

    Article  PubMed  CAS  Google Scholar 

  59. G. Barnes, R. S. Puranam, Y. Luo, and J. O. McNamara, Temproal specific patterns of semaphorin gene expression in rat brain after kainic acid-induced status epilepticus, Hippocampus 13, 1–20 (2003).

    Article  PubMed  CAS  Google Scholar 

  60. D. A. Coulter, Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties, Int. Rev. Neurobiol. 45, 237–52 (2001).

    Article  PubMed  CAS  Google Scholar 

  61. G. Golarai, and T.P. Sutula, Functional alterations in the dentate gyrus after induction of long-term potentiation, kindling, and mossy fiber sprouting, J. Neurophysiol.. 75, 343–353 (1996).

    PubMed  CAS  Google Scholar 

  62. B. M. Longo, and L. E. Mello, Blockade of pilocarpine-or kainate-induced mossy fiber sprouting by cycloheximide does not prevent subsequent epileptogenesis in rats, Neurosci. Lett. 226, 163–166 (1997).

    Article  PubMed  CAS  Google Scholar 

  63. P. A. Williams, J. P. Wuarin, P. Dou, D. J. Ferraro, and F. E. Dudek, Reassessment of the effects of cycloheximide on mossy fiber sprouting and epileptogenesis in the pilocarpine model of temporal lobe epilepsy, J. Neurophysiol. 88, 2075–2087 (2002).

    PubMed  Google Scholar 

  64. K. Inoue, K. Morimoto, K. Sato, N. Yamada, and S. Otsuki, Mechanisms in the development of limbic status epilepticus and hippocampal neuron loss: an experimental study in a model of status epilepticus induced by kindling-like electrical stimulation of the deep prepyriform cortex in rats, Acta Med. Okayama 46, 129–139 (1992).

    PubMed  CAS  Google Scholar 

  65. H. Klitgaard, A. Matagne, J. Vanneste-Goemaere, and D. G. Margineanu, Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations, Epilepsy Res. 51, 93–107 (2002).

    Article  PubMed  CAS  Google Scholar 

  66. L. S. Chen, J. G. Wong, P. K. Banerjee, and O. C. Snead, 3rd. Kainic acid-induced focal cortical seizure is associated with an increase of synaptophysin immunoreactivity in the cortex, Exp. Neurol. 141, 25–31 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Racine, R.J., Fahnestock, M., Xu, B. (2005). Kindling, Neurotrophins and Axon-Guidance Factors. In: Corcoran, M.E., Moshé, S.L. (eds) Kindling 6. Advances in Behavioral Biology, vol 55. Springer, Boston, MA. https://doi.org/10.1007/0-387-26144-3_23

Download citation

Publish with us

Policies and ethics