Skip to main content

Altered Interaction Between the Entorhinal Cortex and Hippocampus in Amygdala Kindled Rats

  • Conference paper
Kindling 6

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 55))

  • 603 Accesses

Abstract

The entorhinal cortex is the main input and output region for the hippocampus. Perirhinal and postrhinal cells send their axons into superficial layers of the EC where they interact with projection cells in layer II and III of the entorhinal cortex but also with apical dendrites of the deep layer entorhinal cortex cells.1 These receive input from olfactory cortex and subiculum and cholinergic input from the basal ganglia and the nucleus basalis Meynert as well as from the septum. Layer II stellate cells form the major portion of the perforant path, which projects to the dentate gyrus, while layer III cells project to the subiculum and in addition to the stratum moleculare of the CA1 area and perhaps also to area CA3.2 Studies on the normal interaction between the entorhinal cortex and hippocampus from adult rats have revealed that seizure susceptibility is larger in the EC than in the hippocampus, which tends to develop only interictal discharges and short ictal events.3,4 In adult rats seizure like events spread from the EC to the subiculum, but rarely fully recruit area CA1 and the DG. This limitation of spread seems to relate to the extensive feedforward and feedback inhibitory network in the DG and the prominent activation of inhibitory interneurons in area CA1.5 The DG was therefore assumed to play a gating role in transfer of information from layer II of the EC to the DG.6 We asked the question whether the properties of EC layer II stellate cells also contribute to the limitation of seizure spread from the EC through the DG to area CA3. Indeed layer II stellate cells express a flat input output curve when stimulated at low frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. M.P Witter, Organization of the entorhinal-hippocampal system: A review of current anatomical data, Hippocampus 3Suppl., 33–44 (1993).

    PubMed  Google Scholar 

  2. T Dugladze, U. Heinemann, U, and T. Gloveli, Entorhinal cortex projection cells to the hippocampal formation in vitro, Brain Res. 905, 224–231 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. J P. Dreier and U. Heinemann, Regional and time dependent variations of low magnesium induced epileptiform activity in rat temporal cortex, Exp. Brain Res. 87, 581–596 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. K. Buchheim, S. Schuchmann, H. Siegmund, H.-J. Gabriel, U Heinemann, and H. Meierkord, Intrinsic optical signal measurement reveal characteristic features during different forms of spontaneous neuronal hyperactivity associated with ECS shrinkage in vitro, Eur. J. Neurosci. 11, 1877–1882 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. R.M Empson and U, Heinemann, The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice, J. Physiol. (Lond.) 484, 707–729 (1995).

    CAS  Google Scholar 

  6. U. Heinemann, H Beck, J P Dreier, E Ficker, J Stabel, and C. L. Zhang, The dentate gyrus as a regulated gate for the propagation of epileptiform activity In: The Dentate Gyrus and its Role in Seizures,.edited by C. E. Ribak, C. M. Gall, and I Mody (Elsevier Science Publishers BV., Amsterdam, 1992), pp. 273–280.

    Google Scholar 

  7. T. Gloveli, D. Schmitz, R M Empson, and U Heinemann, Frequency-dependent information flow from the entorhinal cortex to the hippocampus, J. Neurophysiol. 78, 3444–3449 (1997).

    PubMed  CAS  Google Scholar 

  8. J Behr, T Gloveli, R Gutiérrez, and U Heinemann, Spread of low Mg2+ induced epileptiform activity from the rat entorhinal cortex to the hippocampus after kindling studied in vitro, Neurosci. Lett. 216, 41–44 (1996).

    PubMed  CAS  Google Scholar 

  9. J Behr, K J. Lyson, and I. Mody, Enhanced propagation of epileptiform activity through the kindled dentate gyrus, J. Neurophysiol. 79, 1726–1732 (1998).

    PubMed  CAS  Google Scholar 

  10. J. Behr, T. Gloveli, and U. Heinemann, Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons, Brain Res. 867, 259–264 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. C. Wozny, A. Kivi, T. N. Lehmann, C. Dehnicke, U. Heinemann, and J. Behr, Comment on “On the origin of interictal activity in human temporal lobe epilepsy in vitro”, Science 301 (2003) NIL1–NIL2.

    Article  Google Scholar 

  12. J. Behr, U. Heinemann, and I. Mody, Kindling induces transient nmda receptor-mediated facilitation of high-frequency input in the rat dentate gyrus, J. Neurophysiol. 85, 2195–2202 (2001).

    PubMed  CAS  Google Scholar 

  13. B Hinz, A. Becher, D. Mitter, K. Schulze, U. Heinemann, A. Draguhn, and G. Ahnert-Hilger, Activity-dependent changes of the presynaptic synaptophysin-synaptobrevin complex in adult rat brain, Eur. J. Cell Biol. 80, 615–619 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. D M. Kullmann, Presynaptic kainate receptors in the hippocampus: slowly emerging from obscurity, Neuron 32, 561–564 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. J. Behr, C. Gebhardt, U. Heinemann, and I. Mody, Kindling enhances kainate receptor-mediated depression of GABAergic inhibition in rat granule cells, Eur. J. Neurosci. 16, 861–867 (2002).

    Article  PubMed  Google Scholar 

  16. I Mody and U. Heinemann, NMDA receptors of dentate gyrus granule cells participate in synaptic transmission following kindling, Nature 326, 701–704 (1987)

    Article  PubMed  CAS  Google Scholar 

  17. M. Friedl, H. Clusmann, T. Kral, D. Dietrich, and J. Schramm, Analysing metabotropic glutamate group III receptor mediated modulation of synaptic transmission in the amygdala-kindled dentate gyrus of the rat, Brain Res. 821, 117–123 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. C. Schwarzer, and G. Sperk, Hippocampal granule cells express glutamic acid decarboxylase-67 after limbic seizures in the rat, Neuroscience, 69 (1995) 705–709.

    Article  PubMed  CAS  Google Scholar 

  19. R.S. Sloviter, M. A Dichter, T. L. Rachinsky, E. Dean, J H. Goodman, A. L. Sollas, and D. L. Martin, Basal expression and induction of glutamate decarboxylase and GABA in excitatory granule cells of the rat and monkey hippocampal dentate gyrus, J. Comp. Neurol. 373, 593–618 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. R. Gutierrez and U. Heinemann, Kindling induces transient fast inhibition in the dentate gyrus-CA3 projection, Eur. J. Neurosci. 13, 1371–1379 (2001)

    Article  PubMed  CAS  Google Scholar 

  21. H.O. Bohlen und, K. Schulze, and D. Albrecht, Amygdala-kindling induces alterations in neuronal density and in density of degenerated fibers, Hippocampus 14, 311–318 (2004).

    Article  Google Scholar 

  22. F. Du, W. O. Whetsell, Jr., B. Abou-Khalil, B. Blumenkopf, E. W. Lothman, and R. Schwarcz, Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy, Epilepsy Res. 16, 223–233 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. F Du, T. Eid, E. W. Lothman, C. Köhler, and R. Schwarcz, Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy, J. Neurosci. 15, 6301–6313 (1995).

    PubMed  CAS  Google Scholar 

  24. T. Gloveli, J. Behr, T. Dugladze, Z. Kokaia, M. Kokaia, and U. Heinemann, Kindling alters entorhinal cortex-hippocampal interaction by increased efficacy of presynaptic GABA(B) autoreceptors in layer III of the entorhinal cortex, Neurobiol. Dis. 13, 203–212 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. T. Gloveli, D. Schmitz, and U. Heinemann, Prolonged inhibitory potentials in layer III projection cells of the rat medial entorhinal cortex induced by synaptic stimulation in vitro, Neuroscience 80, 119–131 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Heinemann, U., Albrecht, D., Behr, A., Gloveli, T. (2005). Altered Interaction Between the Entorhinal Cortex and Hippocampus in Amygdala Kindled Rats. In: Corcoran, M.E., Moshé, S.L. (eds) Kindling 6. Advances in Behavioral Biology, vol 55. Springer, Boston, MA. https://doi.org/10.1007/0-387-26144-3_10

Download citation

Publish with us

Policies and ethics