Skip to main content

Experimental Studies on Thermal Conductivity of Thin Films and Superlattices

  • Chapter
Thermal Conductivity

Part of the book series: Physics of Solids and Liquids ((PSLI))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. K. Goodson and Y. JuHeat Conduction in Novel Electronic Films Annu. Rev. Mater. Sci. 29, 261–293 (1999).

    Article  ADS  Google Scholar 

  2. D. G. Cahill, K. Goodson, and A. MajumdarThermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures J. Heat Trans. 124, 223–241 (2002).

    Article  Google Scholar 

  3. P. Bhattacharya, Semiconductor Optoelectronic Devices (Prentice Hall, Upper Saddle River, 1997).

    Google Scholar 

  4. G. Chen, Heat Transfer in Micro-and Nanoscale Photonic Devices in Ann. Rev. Heat Trans. 7, 1–57(1996).

    MATH  Google Scholar 

  5. T. Amundsen and T. OlsenSize-dependent Thermal Conductivity in Aluminum Films Phil. Mag. 11,561–574 (1965).

    ADS  Google Scholar 

  6. V. M. Abrosimov, B. N. Egorov, N.S. Lidorenko, and I. B. RubashovInvestigation of the Thermal Conductivity of Thin Metallic Films Soviet Phys. Solid State 11, 530–532 (1969).

    Google Scholar 

  7. K. Banerjee, A. Amerasekera, G. Dixit, N. Cheung, and C. Hu Characterization of Contact and via failure under Short Duration High Pulsed Current Stress Proc. Int. Reliability Physics Symposium (1997) pp. 216–220.

    Google Scholar 

  8. A. Karim, S. Bjorlin, J. Piprek, and J. E. BowersLong-wavelength Vertical-cavity Lasers and Amplifiers IEEEJ. Sel. Top. Quantum Electron. 6, 1244–1253 (2000).

    Article  Google Scholar 

  9. E. Towe, R. F. Leheny, and A. YangA Historical Perspective of the Development of the Vertical-Cavity Surface-emitting Laser IEEEJ. Sel. Top. Quantum Electron. 6, 1458–1464 (2000).

    Article  Google Scholar 

  10. L. D. Hicks, T. C. Harman, and M. S. DresselhausExperimental Study of the Effect of Quantum-well Structures on the Thermoelectric Figure of Merit Phys. Rev. B 53, 10493–10496 (1996).

    Article  ADS  Google Scholar 

  11. L. D. Hicks and M. S. DresselhausEffect of Quantum-well Structures on the Thermoelectric Figure of Merit Phys. Rev. B 47, 16631–16634 (1993).

    Article  ADS  Google Scholar 

  12. G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial, and T. CaillatRecent developments in thermoelectric materials, Int. Mat. Rev. 48, 45–66 (2003).

    Article  Google Scholar 

  13. H. J. GoldsmidThermoelectric Refrigeration (Plenum Press, New York, 1964).

    Google Scholar 

  14. T. Koga, X. Sun, S. B. Cronin, and M. S. Dresselhaus Appl. Phys. Lett. 73, 2950–2952 (1998).

    Article  ADS  Google Scholar 

  15. D. G. Cahill, Thermal Conductivity Measurement from 30 to 750 K: The 3w method Rev. Sci. Instrum. 61, 802–808 (1990).

    Article  ADS  Google Scholar 

  16. D. G. Cahill, M. Katiyar, and J. R. AbelsonThermal Conductivity of a-Si:H Thin Films Phys. Rev. B 50, 6077–6081 (1994).

    Article  ADS  Google Scholar 

  17. W. L. Liu, T. Borca-Tasciuc, G. Chen, J. L. Liu, and K. L. WangAnisotropic Thermal Conductivity of Ge Quantum-dot and Symmetrically Strained Si/Ge Superlattices J. Nanosci. Nanotechnol. 1, 37–42 (2001).

    Google Scholar 

  18. W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. KatzerThermalconductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique Phys. Rev. B 59, 8105–8113 (1999).

    Article  ADS  Google Scholar 

  19. G. Chen, C.L. Tien, X. Wu, and J.S. SmithMeasurement of Thermal Diffusivity of GaAs/AlGaAs Thin-film Structures J. Heat Trans. 116, 325–331 (1994).

    Article  Google Scholar 

  20. C. L. Tien, A. Majumdar, and F. Gerner eds. Microscale Energy Transport (Taylor and Francis, Bristol PA 1998).

    Google Scholar 

  21. W. L. LiuIn-plane Thermoelectric Properties of Si/Ge Superlattices Ph.D. Thesis, University of California at Los Angeles, Department of Mechanical and Aerospace Engineering, 2003.

    Google Scholar 

  22. G. ChenSize and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures J. Heat Trans. 119, 220–229 (1997).

    Google Scholar 

  23. P. Hyldgaard and G. D. MahanPhonon Knudson Flow in Superlattices in Thermal Conductivity, Vol. 23, (Technomic, Lancaster, 1996), pp. 172–181.

    Google Scholar 

  24. B. Yang and G. ChenPartially Coherent Phonon Heat Conduction in Superlattices Phys. Rev. B 67,195311–195314 (2003).

    Article  ADS  Google Scholar 

  25. A. Balandin and K. L. WangSignificant Decrease of the Lattice Thermal Conductivity due to Phonon Confinement in a Free-standing Semiconductor Quantum Well Phys. Rev. B 58, 1544–1549(1998).

    Article  ADS  Google Scholar 

  26. P. Nath and K.L. ChopraThermal Conductivity of Copper Films Thin Solid Films 20, 53–62(1974).

    Article  ADS  Google Scholar 

  27. K. L. Chopra and P. NathThermal Conductivity of Ultrathin Metal Films in Multilayer Structures J. Appl. Phys. 45, 1923–1925 (1974).

    Article  ADS  Google Scholar 

  28. E. Ogawa, K. D. Lee, V. Blaschke, and P. HoElectromigration Reliability Issues in Dual-damascene Cu Interconnections IEEE Trans. on Reliab. 51, 403–419 (2002).

    Article  Google Scholar 

  29. H. Toyoda, T. Kawanoue, S. Ito, M. Hasunuma, and H. KanekoEffects of Aluminum Texture on Electromigration Lifetime Am. Inst. Phys. Conf. Proc., No.373, (1996), pp. 169–184.

    ADS  Google Scholar 

  30. C. Leu, H. Lin, C. Hu, C. Chien, M. J. Yang, M. C. Yang, and T. HuangEffects of Titanium and Tantalum Adhesion Layers on the Properties of Sol-Gel Derived SrBi2Ta2O9Thin Films J. Appl. Phys. 92, 1511–1517 (2002).

    Article  ADS  Google Scholar 

  31. P. Nath and K. L. ChopraExperimental Determination of the Thermal Conductivity of Thin Films Thin Solid Films 18, 29–37 (1973).

    Article  ADS  Google Scholar 

  32. V. Wachter and F. VolkleinMethod for the Determination of the Thermal Conductivity and the Thermal Diffusivity of Thin Metallic Films Exp. Tech. Phys. 25, 425–431 (1977).

    Google Scholar 

  33. K. FuchsThe Conductivity of Thin Metallic Films According to the Electron Theory of Metals Proc. Camb. Phil. Soc. 34, 100–108 (1938).

    Google Scholar 

  34. T. Q. Qiu and C. L. TienSize Effects on Nonequilibrium Laser Heating of Metal Films ASME J. Heat Trans. 115, 842–847 (1993).

    Google Scholar 

  35. T. Starz, U. Schmidt, and F. VolkleinMicrosensor for in Situ Thermal Conductivity Measurements of Thin Films Sensors and Materials 7, 395–403 (1995).

    Google Scholar 

  36. S. M. Lee, D. G. Cahill, and T. H. AllenThermal Conductivity of Sputtered Oxide Films Phys. Rev. B 52, 253–257 (1995).

    Article  ADS  Google Scholar 

  37. M. B. Kleiner, S. A. Kuhn, and W. WeberThermal Conductivity Measurements of Thin Silicon Dioxide Films in Integrated Circuits IEEE Trans. Electron Dev. 43, 1602–1609 (1996).

    Article  ADS  Google Scholar 

  38. J. H. Orchard-WebbA New Structure for Measuring the Thermal Conductivity of Integrated Circuit Dielectrics in Proc. IEEE Int. Conf. on Microelectronic Test Structures (1991), pp. 41–45.

    Google Scholar 

  39. H. A. Schafft, J. S. Suehle, and P. G. A. MirelThermal Conductivity Measurements of Thin-Film Silicon Dioxide in Proc. IEEE Int. Conf. on Microelectronic Test Structures (1989), pp. 121–125.

    Google Scholar 

  40. K. Goodson, M. Flik, L. Su, and D. AntoniadisAnnealing-temperature Dependence of the Thermal Conductivity of LPCVD Silicon-dioxide Layers IEEE Electron Device Lett. 14, 490–492 (1993).

    Article  ADS  Google Scholar 

  41. R. F. Brotzen, P. J. Loos, and D. P. BradyThermal Conductivity of Thin SiO2Films Thin Solid Films 207, 197–201 (1992).

    Article  ADS  Google Scholar 

  42. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. PhillpotNanoscale Thermal Transport Appl. Phys. Rev. 93, 1–30 (2003).

    Article  Google Scholar 

  43. J. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. JacobsThermal conductivity of Dielectric Thin Films J. Appl. Phys. 66, 4230–4242 (1989).

    Article  ADS  Google Scholar 

  44. D. Ristau and J. EbertDevelopment of a Thermographic Laser Calorimeter Appl. Opt. 25, 4571–4578 (1986).

    Article  ADS  Google Scholar 

  45. T. Ogden, A. Rathsam, and J. GilchristThermal Conductivity of Thick Anodic Oxide Coatings on Aluminum Mater. Lett. 5, 84–87 (1987).

    Article  Google Scholar 

  46. C. Henager and W. Pawlewicz, Thermal Conductivities of Thin, Sputtered Optical Films, Appl. Opt. 32, 91–101 (1993).

    ADS  Google Scholar 

  47. R. Taylor, X. Wang, and X. XuThermophysical Properties of Thermal Barrier Coatings Surf. and Coat, Techn, 120/121, 89–95 (1999).

    Article  Google Scholar 

  48. R. Vassen, X. Cao, and D. StoverImprovement of New Thermal Barrier Coating Systems using a Layered or Graded Structure Ceram. Eng. Sc. Proc. 22, 435–442 (2001).

    Google Scholar 

  49. D. ClarkeMaterials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings Surf. and Coat. Techn. 163/164, 67–74 (2003).

    Article  Google Scholar 

  50. U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J. Dorvaux, R. Mevrel, and M. CaliezSome Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings Aerospace Sc. and Techn. 7, 73–80 (2003).

    Article  Google Scholar 

  51. K. Goodson, O. Kading, M. Rosler, and R. ZachaiExperimental Investigation of Thermal Conduction Normal to Diamond-silicon Boundaries J. Appl. Phys. 74, 1385–1392 (1995).

    Article  ADS  Google Scholar 

  52. H. Verhoeven, E. Boettger, A. Floter, H. Reiss, and R. ZachaiThermal Resistance and Electrical Insulation of Thin low-temperature-deposited Diamond Films Diamond Rel. Mater. 6, 298–302(1997).

    Article  Google Scholar 

  53. S. D. Wolter, D. A. Borca-Tasciuc, G. Chen, N. Govindaraju, R. Collazo, F. Okuzumi, J. T. Prater, and Z. SitarThermal Conductivity of Epitaxially Textured Diamond Films Diamond Rel. Mater. 12, 61–64 (2003).

    Article  Google Scholar 

  54. M. Asheghi, M. N. Touzelbaev, K. Goodson, Y. Leung, and S. WongTemperature-dependent Thermal Conductivity of Single-crystal Silicon Layers in SOI Substrates J. Heat Trans. 120, 30–36(1998).

    Google Scholar 

  55. M. Asheghi, K. Kurabayashi, K. Goodson, R. Kasnavi, and J. PlummerThermal Conduction in Doped Single-crystal Silicon Films, in Proc. 33rd ASME/AIChE National Heat Transfer Conf., (Albuquerque, NM, 1999).

    Google Scholar 

  56. D. Song, Phonon heat conduction in nano and micro-porous thin films Ph. D. Thesis, University of California at Los Angeles, Department of Mechanical and Aerospace Engineering, 2003.

    Google Scholar 

  57. N. Savvides and H. J. GoldsmidThe Effect of Boundary Scattering on the High-temperature Thermal Conductivity of Silicon J. Phys. C: Solid State Phys. 6, 1701–1708 (1973).

    Article  ADS  Google Scholar 

  58. Y. C. Tai, C. H. Mastrangelo, and R. S. Muller, Thermal Conductivity of Heavily Doped Low-pressure Chemical Vapor Deposited Polycrystalline Silicon Films, J. Appl. Phys. 63, 1442–7 (1988).

    Article  ADS  Google Scholar 

  59. F. Volklein and H. BatlesA Microstructure for Measurement of Thermal Conductivity of Polysilicon Thin Films J. Microelectromech. Syst. 1, 194–196 (1992).

    Article  Google Scholar 

  60. S. Uma, A. McConnell, M. Asheghi, K. Kurabayashi, and K. GoodsonTemperature-dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers Int. J. Thermophys. 22, 605–616(2001).

    Article  Google Scholar 

  61. A. McConnell, U. Srinivasan, M. Asheghi, and K. GoodsonThermal Conductivity of Doped Polysilicon J. Microelectromech. Syst. 10, 360–369 (2001).

    Article  MATH  Google Scholar 

  62. R. Neville, Solar Energy Conversion: The Solar Cell, (New York, Elsevier, 1995).

    Google Scholar 

  63. H. Goldsmid, M. Kaila, and G. PaulThermal conductivity of amorphous silicon Phys. Status Sol. A 76, K31–33 (1983).

    ADS  Google Scholar 

  64. G. Pompe and E. HegenbarthThermal Conductivity of Amorphous Si at Low Temperatures Phys. Status Sol. B 147, 103–108 (1988).

    ADS  Google Scholar 

  65. A. Attaf, M. S. Aida and L. HadjerisThermal Conductivity of Hydrogenated Amorphous Silicon Solid State Commun. 120, 525–530 (2001).

    Article  ADS  Google Scholar 

  66. R. OrbachVariational Transport in Disordered Systems Philos. Mag. B 65, 289–301 (1992).

    Google Scholar 

  67. P. B. Allen and J. L. FeldmanThermal Conductivity of Disordered Harmonic Solids Phys. Rev. B 48, 12581–12588 (1993).

    Article  ADS  Google Scholar 

  68. V. M. Abrosimov, B. N. Yegorov, and N. S. LidorenkoAn Investigation of the Thermoelectric Figure of Merit of Bismuth Films Radio Eng. Electro. Phys. 9, 1578–1579 (1971).

    Google Scholar 

  69. F. Volklein and E. Kesseler, Thermal Conductivity and Thermoelectric F and Figure of Merit of Bi1−xSbxfilms with 0 < x ≤ 0.3, Phys. Stat. Sol. (a) 81, 585–596 (1984).

    ADS  Google Scholar 

  70. C. F. Gallo, B. S. Chandrasekhar, and P. H. SutterTransport Properties of Bismuth Single Crystals J. Appl. Phys. 34, 144 (1963).

    Article  ADS  Google Scholar 

  71. F. Volklein and E. KesslerAnalysis of the Lattice Thermal Conductivity of Thin Films by Means of a Modified Mayadas-Shatzkes Model: The Case of Bismuth Films Thin Solid Films 142, 169–181(1986).

    Article  ADS  Google Scholar 

  72. F. Volklein, V. Baier, U. Dillner, E. KesslerThermal Conductivity and Diffusivity of a Thin Film SiO2/Si3N4Sandwich System Thin Solid Films 188, 27–33 (1990).

    Article  ADS  Google Scholar 

  73. V. Baier and F. VolkleinThermal Conductivity of Thin Films Phys. Stat. Sol. (a) 118, K 69 (1990).

    ADS  Google Scholar 

  74. H. J. GoldsmidThermoelectric Refrigeration (Plenum Press, New York, 1964).

    Google Scholar 

  75. D. W. Song, W. L. Liu, T. Zeng, T. Borca-Tasciuc, G. Chen, C. Caylor, and T. D. Sands, Thermal Conductivity of Skutterudite Thin Films and Superlattices, Appl. Phys. Lett. 77, 3854–3856(2000).

    Article  ADS  Google Scholar 

  76. G. Nolas, G. Slack, D. Morelli, T. Tritt, and A. EhrlichThe Effect of Rare-earth Flling on the Lattice Thermal Conductivity of Skutterudites J. Appl. Phys. 79, 4002–4008 (1996).

    Article  ADS  Google Scholar 

  77. L. Esaki and R. TsuSuperlattice and Negative Differential Conductivity in Semiconductors IBMJ. Research and Development 14, 61–61 (1970).

    Article  Google Scholar 

  78. G. ChenPhonon Heat Conduction in Low-dimensional Structures Semiconductors and Semimetals 71, 203–259 (2001).

    Google Scholar 

  79. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic Press, San Diego, CA, 1991).

    Google Scholar 

  80. G. Chen, B. Yang, and W. L. LiuEngineering Nanostructures for Energy Conversion in Heat Transfer and Fluid Flow in Microscale and Nanoscale Structures Wit Press, Southampton, UK, edited by M. Faghri and B. Sunden, pp. 45–91, 2003.

    Google Scholar 

  81. T. M. Tritt, ed., Recent Trend in Thermoelectric Materials Research in Semiconductor and Semimetals 69–71 (Academic Press, San Diego, 2001).

    Google Scholar 

  82. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’QuinnThin-film Thermoelectric Devices with High Room-temperature Figures of Merit Nature 413, 597–602 (2001).

    Article  ADS  Google Scholar 

  83. J. Inoue, H. Itoh, S. Maekawa, Transport properties in magnetic superlattices, J. Phys. Soc. Japan 61, 1149–1152 (1992).

    Article  ADS  Google Scholar 

  84. F. Tsui, B. Chen, J. Wellman, C. Uher, and R. ClarkeHeat conduction of (111) Co/Cu superlattices J. Appl. Phys. 81, 4586–4588 (1997).

    Article  ADS  Google Scholar 

  85. T. YaoThermal properties of AlAs/GaAs superlattices Appl. Phys. Lett. 51, 1798–1800 (1987).

    Article  ADS  Google Scholar 

  86. R. VenkatasubramanianLattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures, Phys. Rev. B 61, 3091–3097 (2000).

    Article  ADS  Google Scholar 

  87. I. Yamasaki, R. Yamanaka, M. Mikami, H. Sonobe, Y. Mori, and T. SasakiThermoelectric Properties of Bi2Te3/Sb2Te3 Superlattice Structure in Proc. 17th Int. Conf. on Thermoelectrics, ICT’98 (1998), pp. 210–213.

    Google Scholar 

  88. M. N. Touzelbaev, P. Zhou, R. Venkatasubramanian, and K. E. GoodsonThermal Characterization of Bi2Te3/Sb2Te3Superlattices J. Appl. Phys. 90, 763–767 (2001).

    Article  ADS  Google Scholar 

  89. X. Y. Yu, G. Chen, A. Verma, and J. S. SmithTemperature Dependence of Thermophysical Properties of GaAs/AlAs Periodic Structure Appl. Phys. Lett. 67, 3554–3556 (1995).

    Article  ADS  Google Scholar 

  90. W. S. Capinski and H.J., MarisThermal Conductivity of GaAs/AlAs Superlattices Physica B 219&220, 699–701 (1996).

    Article  Google Scholar 

  91. M. Lee, D. G. Cahill, and R. VenkatasubramanianThermal Conductivity of Si-Ge Superlattices Appl. Phys. Lett. 70, 2957–2959 (1997).

    Article  ADS  Google Scholar 

  92. T. Borca-Tasciuc, W. L. Liu, T. Zeng, D. W. Song, C. D. Moore, G. Chen, K. L. Wang, M. S. Goorsky, T. Radetic, R. Gronsky, T. Koga, and M. S. DresselhausThermal Conductivity of Symmetrically Strained Si/Ge Superlattices Superlattices and Microstructures 28, 119–206 (2000).

    Article  Google Scholar 

  93. W. L. Liu, T. Borca-Tasciuc, G. Chen, J. L. Liu, and K. L. WangAnisotropy Thermal Conductivity of Ge-quantum Dot and Symmetrically Strained Si/Ge Superlattice J. Nanosc. Nanotechn. 1,39–42 (2001).

    Article  Google Scholar 

  94. B. Yang, W. L. Liu, J. L. Liu, K. L, Wang, and G. ChenMeasurements of Anisotropic Thermoelectric Properties in Superlattices Appl. Phys. Lett. 81, 3588–3590 (2002).

    Article  ADS  Google Scholar 

  95. T. Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H. Ren, C. H. Lin, and S. S. PeiThermal Conductivity of InAs/AlSb Superlattices Microscale Thermophys. Eng. 5, 225–231 (2001).

    Article  Google Scholar 

  96. S. T. Huxtable, A. Abraham, C. L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J. E. Bowers, A. Shakouri, and E. Croke, Thermal Conductivity of Si/SiGe and SiGe/SiGe Superlattices Appl. Phys. Lett. 80, 1737–1739 (2002).

    Article  ADS  Google Scholar 

  97. H. Beyer, J. Nurnus, H. Bottner, Roch T Lambrecht, and G. BauerEpitaxial Growth and Thermoelectric Properties of Bi2Te3Based Low Dimensional Structures Appl. Phys. Lett. 80,1216–1218 (2000).

    Article  ADS  Google Scholar 

  98. T. Harman, P. Taylor, M. Walsh, and B. LaForgeQuantum Dot Superlattice Thermoelectric Materials and Devices Science 297, 2229–2232 (2002).

    Article  ADS  Google Scholar 

  99. D. Gammon, B.V. Shanabrook, and D. S. KatzerExcitons, Phonons, and Interfaces in GaAs/AlAs Quantum-well Structures Phys. Rev. Lett. 67, 1547–1550 (1991).

    Article  ADS  Google Scholar 

  100. T. Ruf, J. Spitzer, V. F. Sapega, V. I. Belitsky, M. Cardona, and K. PloogInterface Roughness and Homogeneous Linewidths in Quantum Wells and Superlattices Studied by Resonant Acousticphonon Raman Scattering Phys. Rev. B 50, 1792–1806 (1994).

    Article  ADS  Google Scholar 

  101. J. M. ZimanElectrons and Phonons (Clarendon, Oxford, 2001).

    MATH  Google Scholar 

  102. S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  103. S. G. Walkauskas, D. A. Broido, K. Kempa, and T. L. ReinickeLattice Thermal Conductivity of Wires J. Appl. Phys. 85, 2579–2582 (1999).

    Article  ADS  Google Scholar 

  104. P. Hyldgaard and G. D. MahanPhonon Superlattice Transport Phys. Rev. B 56, 10754–10757(1997).

    Article  ADS  Google Scholar 

  105. S. Tamura, Y. Tanaka, and H. J. MarisPhonon Group Velocity and Thermal Conduction in Superlattices Phys. Rev. B 60, 2627–2630 (1999).

    Article  ADS  Google Scholar 

  106. W. E. Bies, R. J. Radtke, and H. EhrenreichPhonon Dispersion Effects and the Thermal Conductivity Reduction in GaAs/AlAs Superlattices J. Appl. Phys. 88, 1498–1503 (2000).

    Article  ADS  Google Scholar 

  107. A. A. Kiselev, K. W. Kim, and M. A. StroscioThermal Conductivity of Si/Ge Superlattices: A Realistic Model with a Diatomic Unit Cell Phys. Rev. B 62, 6896–6999 (2000).

    Article  ADS  Google Scholar 

  108. B. Yang and G. ChenLattice Dynamics Study of Anisotropic Heat Conduction in Superlattices Microscale Thermophys. Eng. 5, 107–116 (2001).

    Article  Google Scholar 

  109. M. V. Simkin and G. D. MahanMinimum Thermal Conductivity of Superlattices Phys. Rev. Lett. 84, 927–930 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Yang, B., Chen, G. (2004). Experimental Studies on Thermal Conductivity of Thin Films and Superlattices. In: Tritt, T.M. (eds) Thermal Conductivity. Physics of Solids and Liquids. Springer, Boston, MA . https://doi.org/10.1007/0-387-26017-X_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-26017-X_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48327-1

  • Online ISBN: 978-0-387-26017-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics