Skip to main content

Ceramics and Glasses

  • Chapter
Thermal Conductivity

Part of the book series: Physics of Solids and Liquids ((PSLI))

4. Conclusions

In many applications of ceramic and glass materials, appropriate thermal conductivity is intrinsically linked to their applications. Through selected examples, we have illustrated how recent advances in thermal conductivity allow us to better understand thermal conductivities of ceramics and glasses, thereby advancing uses of these important materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. G. A. SlackNonmetallic Crystals with High Thermal Conductivity J. Phys. Chem. Solids 34, 321–335 (1973).

    Article  ADS  Google Scholar 

  2. P. GreilAdvanced Engineering Ceramics Adv. Eng. Mater. 4, 247–254 (2002).

    Article  Google Scholar 

  3. D. R. Fear and S. ThomasEmerging Materials Challenges in Microelectronics Packaging MRS Bulletin 28(1), 68–74 (2003).

    Google Scholar 

  4. V. P. Atluri, R. V. Mahajan, P. R. Patel, D. Mallik, J. Tang, V. S. Wakharkar, G. M. Chrysler, C.-P. Chiu, G. N. Choksi, and R. S. ViswanathCritical Aspects of High-Performance Microprocessor Packaging MRS Bull. 28(1), 21–34 (2003).

    Google Scholar 

  5. W. Werdecker and F. AldingerAluminum Nitride — An Alternative Ceramic Substrate for High Power Applications in Microcircuits IEEE Trans. Comp., Hybrids, Manuf. Technol. 7, 399–404 (1984).

    Article  Google Scholar 

  6. Y. Kurokawa, K Utsumi, H. Takamizawa, T. Kamata, and S. NoguchiAlN Subtrates with High Thermal Conductivity IEEE Trans. Comp., Hybrids, Manuf. Technol. 8, 247–252 (1985).

    Article  Google Scholar 

  7. D. G. Brunner and K. H. WienandMetallized Aluminium Nitride Ceramics — Potential, Properties, Applications Interceram. 37(4), 29–32 (1988).

    Google Scholar 

  8. N. IchinoseAluminium Nitride Ceramics for Substrates Mater. Sci. Forum 34–36, 663–667 (1988).

    Google Scholar 

  9. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. TakahashiHigh Thermal Conductivity Aluminium Nitride Ceramic Substrates and Packages IEEE Trans. Comp., Hybrids, Manuf. Technol. 13, 313–319 (1990).

    Article  Google Scholar 

  10. R. R. TummalaCeramic and Glass-Ceramic Packaging in the 1990s J. Am. Ceram. Soc. 74(5), 895–908 (1991).

    Article  Google Scholar 

  11. A. V. VirkarThermodynamic and Kinetic Effeccts of Oxygen Removal on the Thermal Conductivity of Aluminum Nitride J. Am. Ceram. Soc. 72(11), 2031–2042 (1989).

    Article  Google Scholar 

  12. L. M. SheppardAluminum Nitride: A Versatile but Challenging Material Am. Ceram. Soc. Bull. 69(11), 1801–1812 (1990).

    Google Scholar 

  13. G. W. Prohaska and G. R. MillerAluminum Nitride: A Review of the Knowledge Base for Physical Property Development Mat. Res. Soc. Symp. Proc. 167, 215–227 (1990).

    Google Scholar 

  14. G. A. Slack and S. F. BartramThermal Expansion of Some Diamondlike Crystals J. Appl. Phys. 1, 89–98 (1975).

    Article  ADS  Google Scholar 

  15. K. Watari, T. Tsugoshi, T. Nagaoka, K. Ishizaki, S. Ca, and K. Mori in Proceedings of the 18th International Japan-Korea Seminar on Ceramics Edited by A. Kato, H. Tateyama and H. Hasuyama (TIC, Japan 2001), 98–101.

    Google Scholar 

  16. K. Watari, M. Kawamoto, and K. IshizakiSintering Chemical Reactions to Increase Thermal Conductivity of Aluminum Nitride J. Mater. Sc. 26(17), 4727–4732 (1991).

    Article  ADS  Google Scholar 

  17. K. Watari, H. Nakano, K. Urabe, K. Ishizaki, S. Cao, and K. MoriThermal Conductivity of AlN Ceramic with a Very Low Amount of Grain Boundary Phase at 4 to 1000 K J. Mater. Res. 17(11), 2940–2944 (2002).

    Article  ADS  Google Scholar 

  18. T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie, Jr., and R. A. CutlerHigh-Thermal-Conductivity Aluminum Nitride Ceramics: the Effect of Thermodynamic, Kinetic, and Microstructural Factors J. Amr. Ceram. Soc.80(6), 1421–1435 (1997).

    Article  Google Scholar 

  19. X. Xu, H. Zhuang, W. Li, S. Xu, B. Zhang, and X. FuImproving Thermal Conductivity of Sm2O3-doped AlN Ceramics by Changing Sintering Conditions Mat. Sci. Eng. A 342, 104–108 (2003).

    Article  Google Scholar 

  20. J. Jarrige, J. P. Lecompte, J. Mullot, and G. MillerEffecct of Oxygen on the Thermal Conductivity of Aluminium Nitride Ceramics J. Europ. Ceram. Soc. 17, 1891–1895 (1997).

    Article  Google Scholar 

  21. K. Watari, M. E. Brito, T. Nagaoka, M. Toriyama, and S. KanzakiAdditives for Low-Temperature Sintering of AlN Ceramics with High Thermal Conductivity and High Strength Key Engin. Mater. 159–160, 205–208 (1999).

    Article  Google Scholar 

  22. Y. Liu, H. Zhou, Y. Wu, and L. QiaoImproving Thermal Conductivity of Aluminum Nitride Ceramics by Refining Microstructure Mater. Lett. 43(3), 114–117 (2000).

    Article  Google Scholar 

  23. G. Pezzotti, A. Nakahira, and M. TajikaEffect of Extended Annealing Cycles on the Thermal Conductivity of AlN/Y2O3Ceramics J. Europ. Ceram. Soc. 20(9), 1319–1325 (2000).

    Article  Google Scholar 

  24. L. Qiao, H. Zhou, H. Xue, and S. WangEffect of Y2O3on Low Temperature Sintering and Thermal Conductivity of AlN Ceramics J. Europ. Ceram. Soc. 23, 61–67 (2003).

    Article  Google Scholar 

  25. J. S. Haggerty and A. LightfootOpportunities for Enhancing the Thermal Conductivities of SiC and Si3N4Ceramics Through Improved Processing Ceram. Eng. Sci. Proc. 16(4), 475–487 (1995).

    Article  Google Scholar 

  26. M. Mitayama, K. Hirao, M. Toriyama, and S. KanzakiThermal Conductivity of β-Si3N4: I, Effects of Various Microstructural Factors J. Am. Ceram. Soc. 82(11), 3105–3112 (1999).

    Google Scholar 

  27. G. Ziegler and D. P. H. HasselmanEffect of Phase Composition and Microstructure on the Thermal Diffusivity of Silicon Nitride J. Mater. Sci. 16, 495–503 (1981).

    Article  ADS  Google Scholar 

  28. M. Kuriyama, Y. Inomata, T. Kijima, and Y. HasegawaThermal Conductivity of Hot-Pressed Si3N4by Laser-Flash Method, Amer. Ceram. Soc. Bull. 57(12), 1119–1122 (1978).

    Google Scholar 

  29. K. Tsukuma, M. Shimada and M. KoizumiThermal Conductivity and Microhardness of Si3N4with and without Additives Am. Ceram. Soc. Bull. 60(9), 910–912 (1981).

    Google Scholar 

  30. K. Watari, K. Hirao and M. ToriyamaEffect of Grain Size on the Thermal Conductivity of Si3N4 J. Am. Ceram. Soc. 82(3), 777–779 (1999).

    Article  Google Scholar 

  31. Y. Okamoto, N. Hirosaki, M. Ando, F. Munakata, and Y. AkimuneThermal Conductivity of Self-reinforced Silicon Nitride Containing Large Grains Aligned by Extrusion Pressing J. Ceram. Soc. Jpn. 105, 631–633 (1997).

    Google Scholar 

  32. S. W. Lee, H. B. Chae, D. S. Park, Y. H. Choa, K. Niihara, and B. J. HockeyThermal Conductivity of Unidirectionally Oriented Si3N4w/Si3N4Composites J. Mater. Sci. 35, 4487–4493 (2000).

    Article  Google Scholar 

  33. N. Hirosaki, Y. Okamoto, F. Munakata, and Y. AkimuneEffect of Seeding on the Thermal Conductivity of Self-reinforced Silicon Nitride J. Europ. Ceram. Soc. 19, 2183–2187 (1999).

    Article  Google Scholar 

  34. Y. Lin, X.-S. Ning, H. Zhou, and W. XuStudy on the Thermal Conductivity of Silicon Nitride Ceramics with Magnesia and Yttria as Sintering Additives Mat. Lett. 57, 15–19 (2002).

    Article  Google Scholar 

  35. N. Hirosaki, Y. Okamoto, M. Ando, F. Munakata and Y. AkimuneEffect of Grain Growth on the Thermal Conductivity of Silicon Nitride J. Ceram. Soc. Jpn. 104, 49–53 (1996).

    Google Scholar 

  36. H. Hubner and E. DorreAlumina: Processing, Properties and Applications (Springer-Verlag, Berlin, 1984), pp. 220–265.

    Google Scholar 

  37. W. Nunes Dos Santos, P. I. P. Filho, and R. TaylorEffect of Addition of Niobium Oxide on the Thermal Conductivity of Alumina, J. Europ. Ceram. Soc. 18, 807–811 (1998).

    Article  Google Scholar 

  38. R. S. Roth, T. Nagas, and L. P. CookPhase Diagrams for Ceramics, The American Ceramic Society, Columbus, OH (1981), 4, 117.

    Google Scholar 

  39. Y. Liao, R.C. Fang, Z. Y. Ye, N.G. Shang, S. J. Han, Q. Y. Shao, and S.Z. JiInvestigation of the Thermal Conductivity of Diamond Film on Aluminum Nitride Ceramic App. Phys. A 69, 101–103 (1999).

    Article  ADS  Google Scholar 

  40. I. J. Davies, T. Ishikawa, N. Suzuki, M. Shibuya, and T. HirokawaProc. 5thJapan Int. SAMPE Symp. (Japan Chapter of SAMPE, Yokohama (1997), pp. 1672–1632.

    MATH  Google Scholar 

  41. M. Takeda, Y. Imai, H. Ichikawa, Y. Kagawa, H. Iba, and H. KakisawaSome Mechanical Properties of SiC (Hi-Nicalon) Fiber-Reinforced SiC Matrix Nicaloceram Composites Ceram. Eng. Sci. Proc. 18, 779–786 (1997).

    Article  Google Scholar 

  42. T. Ishikawa, S. Kajii, K. Matsunaga, T. Hogami, Y. Kohtoku, and T. NagasawaA Tough, Thermally Conductive Silicon Carbide Composite with High Strength up to 1600°C in Air Science 282, 1295–1297 (1998).

    Article  ADS  Google Scholar 

  43. J. Ma and H. H. HngHigh Thermal Conductivity Ceramic Layered System Substrates for Microelectronic Applications J. Mater. Sci.: Mater. Electron. 13, 461–464 (2002).

    Article  Google Scholar 

  44. A. Maqsood, M. Anis-ur-Rehman, V. Gumen, and Anwar-ur-HaqThermal Conductivity of Ceramic Fibers as a Function of Temperature and Press Load J. Phys. D: Appl. Phys. 33, 2057–2063 (2000).

    Article  ADS  Google Scholar 

  45. M. A. WhiteProperties of Materials (Oxford, New York, 1999), pp. 270–271.

    Google Scholar 

  46. Y. Balci, M. E. Yakinci, M. A. Aksan, A. Özdes, and H. AtesThermal Conductivity Properties of Glass-Ceramic (Bi2−δ-γ GaδTlγ)Sr2Ca2Cu3O10+xHigh-TcSuperconductors J. Low Temp. Phys. 117, 963–967 (1999).

    Article  Google Scholar 

  47. G. Suresh, G. Seenivasan, M. V. Krishnaiah, and P. S. MurtiInvestigation of the Thermal Conductivity of Selected Compounds of Gadolinium and Lanthanum J. Nucl. Mater. 249, 259–261 (1997).

    Article  ADS  Google Scholar 

  48. G. Suresh, G. Seenivasan, M. V. Krishnaiah, and P. S. MurtiInvestigation of the Thermal Conductivity of Selected Compounds of Lanthanum, Samarium and Europium J. Alloys Comp. 269, L9–L12 (1998).

    Article  Google Scholar 

  49. W. A. Groen, M. J. Kraan, and G. de WithPreparation, Microstructure and Properties of Magnesium Silicon Nitride (MgSiN2) Ceramics J. Europ. Ceram. Soc. 12, 413–420 (1993).

    Article  Google Scholar 

  50. W. A. Groen, M. J. Kraan, G. de With, and M. P. A. ViegersNew Covalent Ceramics: MgSiN2 Mat. Res. Soc. Symp. Proc. 327, 239–244 (1994).

    Google Scholar 

  51. R. J. Bruls, H. T. Hintzen, and R. MetselaarProceedings of the Twenty Fourth International Thermal Conductivity Conference and Twelfth International Thermal Expansion Symposium (Pittsburgh, 1997), edited by P. S. Gaal, and D. E. Apostoleseu (Technomics, Pennsylvania, 1999), 3.

    Google Scholar 

  52. R. J. Bruls, A. A. Kudyba-Jansen, P. Gerharts, H. T. Hintzen, and R. MetselaarPreparation, Characterization and Properties of MgSiN2Ceramics J. Mater. Sci.: Mater. Electron. 13, 63–75 (2002).

    Article  Google Scholar 

  53. E. Iguchi, T. Itoga, H. Nakatsugawa, F. Munakata, and K. FuruyaThermoelectric Properties in Bi2−x PbxSr3−y YyCo2O9−γ Ceramics J. Phys. D: Appl. Phys. 34, 1017–1024 (2001).

    Article  ADS  Google Scholar 

  54. S. Katsuyama, Y. Takagi, M. Ito, K. Majima, H. Nagai, H. Sakai, K. Yoshimura, and K. KosugeThermoelectric Properties of (Zn1−y Mgy)1−x AlxO Ceramics Prepared by the Polymerized Complex Method J. Appl. Phys. 92, 1391–1398 (2002).

    Article  ADS  Google Scholar 

  55. N. F. Mott and E. A. DavisElectronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).

    Google Scholar 

  56. D. AdlerAmorphous-Semiconductor Devices Sci. Am. 236(5), 36–48 (1977).

    Article  ADS  Google Scholar 

  57. D. G. Cahill, J. R. Olson, H. E. Fischer, S. K. Watson, R. B. Stephens, R. H. Tait, T. Ashworth, and R. O. PohlThermal Conductivity and Specific Heat of Glass Ceramics Phys. Rev. B 44, 12226–12232 (1991).

    Article  ADS  Google Scholar 

  58. T. Velinov and M. GateshikiThermal Conductivity of Ge-As-Se(S) Glasses Phys. Rev. B: Condensed Matter Mater. Phys. 55(17), 11014–11017 (1997).

    Article  ADS  Google Scholar 

  59. N. A. Hegab, M. Fadel, M. A. Afifi, and M. F. ShawerTemperature Dependence of Electrical and Thermal Properties of Te82.2Ge13.22Si4.58Glassy Alloy J. Phys. D: Appl. Phys. 33, 2223–2229 (2000).

    Article  ADS  Google Scholar 

  60. J. Philip, R. Rajesh and C. P. MenonCarrier-Type Reversal in Pb-Ge-Se Glasses: Photopyroelectric Measurements of Thermal Conductivity and Heat Capacity Appl. Phys. Lett. 78, 745–747 (2001).

    Article  ADS  Google Scholar 

  61. A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. PhilipObservation of a Threshold Behavior in the Optical Band Gap and Thermal Diffusivity of Ge-Sb-Se Glasses Phys. Rev. B 45, 8112–8115 (1992).

    Article  ADS  Google Scholar 

  62. J. C. de Lima, N. Cella, L. C. M. Miranda, C. Chying An, A. H. Franzan, and N. F. LeitePhotoacoustic Characterization of Chalcogenide Glasses: Thermal Diffusivity of GexTe1−x Phys. Rev. B 46, 14186–14189 (1992).

    Article  ADS  Google Scholar 

  63. M. F. ThorpeContinuous Deformations in Random Networks J. Non-Cryst. Solids 57, 350–370 (1983).

    Article  ADS  Google Scholar 

  64. J. C. Phillips and M.F. ThorpeConstraint Theory, Vector Percolation and Glass Formation Solid State Commun. 53, 699–702 (1985).

    Article  ADS  Google Scholar 

  65. J. C. PhillipsVibrational Thresholds Near Critical Average Coordination in Alloy Network Glasses Phys. Rev. B 31, 8157–8163 (1985).

    Article  ADS  Google Scholar 

  66. N. K. Abrikosov, V. F. Bankina, L. V. Poretskaya, L. E. Shelimova, and E. V. SkudnovaSemiconducting II–VI, IV–VI and V–VI Compounds (Plenum, New York, 1969), pp. 67.

    Google Scholar 

  67. M. L. Baesso, A. C. Bento, A. R. Duarte, A. M. Neto, L.C.M. Miranda, J.A. Sampaio, T. Catunda, S. Gama and F. C. G. GandraNd2O3Doped Low Silica Calcium Aluminosilicate Glasses: Thermomechanical Properties J. Appl. Phys. 85, 8112–8118 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Sun, R., White, M.A. (2004). Ceramics and Glasses. In: Tritt, T.M. (eds) Thermal Conductivity. Physics of Solids and Liquids. Springer, Boston, MA . https://doi.org/10.1007/0-387-26017-X_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-26017-X_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48327-1

  • Online ISBN: 978-0-387-26017-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics