Neural Rhythms

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Central Pattern Generator Electrical Synapse Childhood Absence Epilepsy Rhythmic Burst Stomatogastric Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

General References

  1. Hille B [1992]. Ionic Channels of Excitable Membranes (2nd edition). Sunderland MA: Sinauer Associates, Inc.Google Scholar
  2. Kaczmarek LK, and Levitan IB [1987]. Neuromodulation. New York: Oxford University Press, Inc.Google Scholar
  3. Llinás RR [1988]. The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science, 242: 1654–1664.ADSCrossRefGoogle Scholar
  4. Nicholls JG, Wallace BG, Fuchs PA, and Martin AR [2001]. From Neuron to Brain: A Cellular Approach to the Function of the Nervous System (4th edition). Sunderland MA: Sinauer Associates, Inc.Google Scholar


  1. Boyett MR, Honjo H, and Kodama I [2000]. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc. Res., 47: 658–687.CrossRefGoogle Scholar
  2. Schram G, et al. [2002]. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ. Res., 90: 939–950.CrossRefGoogle Scholar

HCN Channels

  1. DiFrancesco D [1999]. Dual allosteric modulation of pacemaker (f) channels by cAMP and voltage in rabbit SA node. J. Physiol., 515: 367–376.CrossRefGoogle Scholar
  2. Ludwig A, et al. [1998]. A family of hyperpolarization-activated mammalian cation channels. Nature, 393: 587–591.CrossRefADSGoogle Scholar
  3. Zagotta WN, et al. [2003]. Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature, 425: 200–205.CrossRefADSGoogle Scholar

Thalamocortical Rhythms

  1. Huguenard JR, and Prince DA [1992]. A novel T-type current underlies prolonged Ca2+ dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J. Neurosci., 12: 3804–3817.Google Scholar
  2. McCormick DA, and Huguenard JR [1992]. A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol., 68: 1384–1400.Google Scholar
  3. Munk MHJ, et al. [1996]. Role of reticular activation in the modulation of intracortical synchronization. Science, 272: 271–274.ADSCrossRefGoogle Scholar
  4. Steriade M, Amzica F, and Contreras D [1996]. Sunchronization of fast (30–40Hz) spontaneous cortical rhythms during brain activation. J. Neurosci., 16: 392–417.Google Scholar
  5. Steriade M, McCormick DA, and Sejnowski TJ [1993]. Thalamocortical oscillations in the sleeping and awake brain. Science, 262: 679–685.ADSCrossRefGoogle Scholar
  6. von Krosigk M, Bal T, and McCormick DA [1993]. Cellular mechanisms of a synchronized oscillation in the thalamus. Science, 261: 361–364.ADSCrossRefGoogle Scholar


  1. Crunelli V, and Leresche N [2002]. Childhood absence epilepsy: genes, channels, neurons and networks. Nature Rev. Neurosci., 3: 371–382.CrossRefGoogle Scholar
  2. Velazquez JPL, and Carlen PL [2000]. Gap junctions, synchrony and seizures. Trends Neurosci., 23: 68–74.CrossRefGoogle Scholar

Gap Junctions

  1. Bruzzone R, White TW, and Paul DL [1996]. Connections with connexins: The molecular basis of direct intercellular signaling. Eur. J. Biochem., 238: 1–27.CrossRefGoogle Scholar
  2. Evans WH, and Martin PEM [2002]. Gap junctions: Structure and function. Mol. Mem. Biol., 19: 121–136.CrossRefGoogle Scholar
  3. Kumar NM, and Gilula NB [1996]. The gap junction communication channel. Cell, 84: 381–388.CrossRefGoogle Scholar
  4. Simon AM, and Goodenough DA [1998]. Diverse functions of vertebrate gap junctions. Trends Cell Biol., 8: 477–483.CrossRefGoogle Scholar
  5. Unger VM, et al. [1999]. Three-dimensional structure of a recombinant gap junction membrane channel. Science, 283: 1176–1180.CrossRefADSGoogle Scholar

GABAergic Neurons and Gap Junction-Mediated Synchrony

  1. Galarreta M, and Hestrin S [2001]. Electrical synapses between GABA-releasing interneurons. Nature Rev. Neurosci., 2: 425–433.CrossRefGoogle Scholar
  2. Galarreta M, and Hestrin S [1999]. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature, 402: 72–75.CrossRefADSGoogle Scholar
  3. Gibson JR, Belerlein M, and Connors BW [1999]. Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402: 75–79.CrossRefADSGoogle Scholar
  4. Tamás G, et al. [2000]. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neurosci., 3: 366–371.CrossRefGoogle Scholar

Central Pattern Generators

  1. Grillner S, et al. [1998]. Intrinsic function of a neuronal network-A vertebrate central pattern generator. Brain Res. Revs., 26: 184–197.CrossRefGoogle Scholar
  2. Grillner S, et al. [1995]. Neural networks that co-ordinate locomotion and body orientation in lamphrey. Trends. Neurosci., 18: 270–279.CrossRefGoogle Scholar
  3. Marder E, and Bucher D [2001]. Central pattern generators and the control of rhythmic movement. Curr. Biol., 11: R986–R996.CrossRefGoogle Scholar
  4. Marder E, and Calabrese RL [1996]. Principles of rhythmic motor pattern generation. Physiol. Rev., 76: 687–717.Google Scholar
  5. Nusbaum MP, and Beenhakker MP [2002]. A small-systems approach to motor pattern generation. Nature, 417: 343–350.CrossRefADSGoogle Scholar


  1. Gray PA, et al. [1999]. Modulation of the respiratory frequency by peptidergic input to the rhythmogenic neurons in the Prebötzinger complex. Science, 286: 1566–1568.CrossRefGoogle Scholar
  2. Lieske SP, et al. [2000]. Reconfiguration of the neural network controlling multiple breathing patterns: Eupnea, sighs and gasps. Nature Neurosci., 3: 600–607.CrossRefGoogle Scholar
  3. Ramirez JM, and Richter DW [1996]. The neuronal mechanisms of respiratory rhythm generation. Curr. Opin. Neurobiol., 6: 817–825.CrossRefGoogle Scholar

Motor Learning and Memory

  1. Kandel ER [2000]. The molecular biology of memory storage: A dialogue between genes and synapses. Science, 294: 1030–1038.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations