Skip to main content

Regulation by Viruses

  • Chapter
Molecular and Cellular Signaling

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1103 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General Reading

  • Schaechter M, Engelberg NC, Eisenstein BI, and Medoff G [1999]. Mechanisms of Microbial Diseases (3rd edition). Baltimore: Lippincott, Williams and Wilkins.

    Google Scholar 

  • Walker TS [1998]. Microbiology. Philadelphia: W.B. Saunders and Company.

    Google Scholar 

Viral Entry into the Cell

  • Greber UF [2002]. Signalling in viral entry. Cell. Mol. Life Sci., 59: 608–626.

    Article  Google Scholar 

  • Overbaugh J, Miller AD, and Eiden MV [2001]. Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Micro. Mol. Biol. Rev., 65: 371–389.

    Article  Google Scholar 

  • Sieczkarski SB, and Whittaker GR [2002]. Dissecting virus entry via endocytosis. J. Gen. Virol., 83: 1535–1545.

    Google Scholar 

Virus Cytoplasmic Transport

  • McDonald D, et al. [2002]. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol., 159: 441–452.

    Article  Google Scholar 

  • Seisenberger G, et al. [2001]. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science, 294: 1929–1932.

    Article  ADS  Google Scholar 

  • Sodeik B [2000]. Mechanisms of viral transport in the cytoplasm. Trends Microbiol., 8: 465–472.

    Article  Google Scholar 

  • Sodeik B, Ebersold MW, and Helenius A [1997]. Microtubule-mediated transport of incoming herpes simplex 1 capsids to the nucleus. J. Cell Biol., 136: 1007–1021.

    Article  Google Scholar 

Viral Movement In and Out of the Nucleus

  • Salman H, et al. [2001]. Kinetics and mechanism of DNA uptake into the cell nucleus. Proc. Natl. Acad. Sci. USA, 98: 7247–7252.

    Article  ADS  Google Scholar 

  • Trotman LC, et al. [2001]. Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nature Cell Biol., 3: 1092–1100.

    Article  Google Scholar 

Viral Release and Budding

  • Freed EO [2002]. Viral late domains. J. Virol., 76: 4679–4687.

    Article  Google Scholar 

  • Katzmann DJ, Odorizzi G, and Emr SD [2002]. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol., 3: 893–905.

    Article  Google Scholar 

  • McDonald D, et al. [2003]. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science, 300: 1295–1297.

    Article  ADS  Google Scholar 

  • Pelchen-Matthews A, Kramer B, and Marsh M [2003]. Infectious HIV-1 assembles in late endosomes in primary macrophages. J. Cell Biol., 162: 443–455.

    Article  Google Scholar 

  • Von Schwedler UK, et al. [2003]. The protein network of HIV budding. Cell, 114: 701–713.

    Article  Google Scholar 

Hepatitis C Virus

  • Bartenschlager R, and Lohmann V [2000]. Replication of hepatitis C virus. J. Gen. Virol., 81: 1631–1648.

    Google Scholar 

  • Goodbourn S, Didcock L, and Randall, RE [2000]. Interferons: Cell signalling, immune modulation, antiviral responses, and viral countermeasures. J. Gen. Virol., 81: 2341–2364.

    Google Scholar 

  • Katze MG, He YP, and Gale M, Jr. [2002]. Viruses and interferons: A fight for supremacy. Nature Rev. Immunol., 2: 675–687.

    Article  Google Scholar 

  • Large MK, Kittlesen DJ, and Hahn YS [1999]. Suppression of host immune response by the core protein of Hepatitis C virus: Possible implications for Hepatitis C virus persistence. J. Immunol., 162: 931–938.

    Google Scholar 

HIV-1

  • Boshoff C, and Weiss R [2002]. Aids-related malignancies. Nature Rev. Cancer, 2: 373–382.

    Article  Google Scholar 

  • Emerman M, and Malim MH [1998]. HIV-1 regulatory/accessory genes: Keys to unraveling viral and host biology. Science, 280: 1880–1884.

    Article  ADS  Google Scholar 

  • Gu YP, and Sundquist WI [2003]. Good to CU, Nature, 424: 21–22.

    Article  ADS  Google Scholar 

  • Jacotet E, et al. [2000]. Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein R and Bcl-2. J. Exp. Med., 193: 509–519.

    Article  Google Scholar 

  • Karn J [1999]. Tackling Tat. J. Mol. Biol., 293: 235–254.

    Article  Google Scholar 

  • Kwong, PD, et al. [2002]. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor binding sites. Nature, 420: 678–682.

    Article  ADS  Google Scholar 

  • Lum JJ [2003]. Vpr R77Q is associated with long-term nonprogressive HIV infection and impaired induction of apoptosis. J. Clin. Invest., 111: 1547–1554.

    Article  Google Scholar 

  • Marin M, et al. [2003]. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nature Med., 9: 1398–1403.

    Article  Google Scholar 

  • Sheehy AM, Gaddis NC, and Malim MH [2003]. The antiretroviral enzyme APOBEC3G is degraded by the proteosome in response to HIV-1 Vif. Nature Med., 9: 1404–1407.

    Article  Google Scholar 

  • Stevenson M [2003]. HIV-1 pathogenesis. Nature Med., 9: 853–860.

    Article  Google Scholar 

  • Swigut T, Shohdy N, and Skowronski J [2001]. Mechanism for downregulation of CD28 by Nef. EMBO J., 20: 1593–1604.

    Article  Google Scholar 

  • Swingler S, et al. [2003]. Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature, 424: 213–219.

    Article  ADS  Google Scholar 

  • Swingler S, et al. [1999]. HIV-Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nature Med., 5: 997–1003.

    Article  Google Scholar 

  • Wei XP, et al. [2003]. Antibody neutralization and escapes by HIV-1, Nature, 422: 307–312.

    Article  ADS  Google Scholar 

  • Wyatt R, and Sodroski J [1998]. The HIV-1 envelope glycoproteins: Fusogens, antigens and immunogens. Science, 280: 1884–1888.

    Article  ADS  Google Scholar 

KSHV

  • Damania B, Choi JK, and Jung JU [2000]. Signaling activities of gammaherpesvirus membrane proteins. J. Virol. 74: 1593–1601.

    Article  Google Scholar 

  • Moore PS, and Chang Y [2001]. Molecular virology of Kaposi’s sarcoma-associated herpesvirus. Phil. Trans. R. Soc. Lond. B, 356: 499–516.

    Article  Google Scholar 

Bacteriophage Lambda

  • Bell CE, et al. [2000]. Crystal structure of the l repressor C-terminal domain provides a model for cooperative operator binding. Cell, 101: 801–811.

    Article  Google Scholar 

  • Campbell A [2003]. The future of bacteriophage biology. Nature Rev. Genet., 4: 471–477.

    Article  Google Scholar 

  • McAdams HH, and Shapiro L [1995]. Circuit simulation of genetic networks. Science, 269: 650–656.

    Article  ADS  Google Scholar 

  • Ptashne M, and Gann A [1997]. Transcriptional activation by recruitment. Nature, 386: 569–577.

    Article  ADS  Google Scholar 

Shiga Toxin

  • O’Loughlin EV, and Robins-Brown RM [2001]. Effect of Shiga toxin and Shiga-like toxins on eukaryotic cells. Microbes Infect., 3: 493–507.

    Article  Google Scholar 

  • Wagner PL, and Waldor MK [2002]. Bacteriophage control of bacterial virulence. Infect. Immun., 70: 3985–3993.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Regulation by Viruses. In: Molecular and Cellular Signaling. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY . https://doi.org/10.1007/0-387-26015-3_18

Download citation

Publish with us

Policies and ethics