Regulation by Viruses

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Bovine Leukemia Virus Bacteriophage Lambda Reverse Transcribe Gp120 Envelope Protein Nonstructural Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


General Reading

  1. Schaechter M, Engelberg NC, Eisenstein BI, and Medoff G [1999]. Mechanisms of Microbial Diseases (3rd edition). Baltimore: Lippincott, Williams and Wilkins.Google Scholar
  2. Walker TS [1998]. Microbiology. Philadelphia: W.B. Saunders and Company.Google Scholar

Viral Entry into the Cell

  1. Greber UF [2002]. Signalling in viral entry. Cell. Mol. Life Sci., 59: 608–626.CrossRefGoogle Scholar
  2. Overbaugh J, Miller AD, and Eiden MV [2001]. Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Micro. Mol. Biol. Rev., 65: 371–389.CrossRefGoogle Scholar
  3. Sieczkarski SB, and Whittaker GR [2002]. Dissecting virus entry via endocytosis. J. Gen. Virol., 83: 1535–1545.Google Scholar

Virus Cytoplasmic Transport

  1. McDonald D, et al. [2002]. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol., 159: 441–452.CrossRefGoogle Scholar
  2. Seisenberger G, et al. [2001]. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science, 294: 1929–1932.CrossRefADSGoogle Scholar
  3. Sodeik B [2000]. Mechanisms of viral transport in the cytoplasm. Trends Microbiol., 8: 465–472.CrossRefGoogle Scholar
  4. Sodeik B, Ebersold MW, and Helenius A [1997]. Microtubule-mediated transport of incoming herpes simplex 1 capsids to the nucleus. J. Cell Biol., 136: 1007–1021.CrossRefGoogle Scholar

Viral Movement In and Out of the Nucleus

  1. Salman H, et al. [2001]. Kinetics and mechanism of DNA uptake into the cell nucleus. Proc. Natl. Acad. Sci. USA, 98: 7247–7252.CrossRefADSGoogle Scholar
  2. Trotman LC, et al. [2001]. Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nature Cell Biol., 3: 1092–1100.CrossRefGoogle Scholar

Viral Release and Budding

  1. Freed EO [2002]. Viral late domains. J. Virol., 76: 4679–4687.CrossRefGoogle Scholar
  2. Katzmann DJ, Odorizzi G, and Emr SD [2002]. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol., 3: 893–905.CrossRefGoogle Scholar
  3. McDonald D, et al. [2003]. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science, 300: 1295–1297.CrossRefADSGoogle Scholar
  4. Pelchen-Matthews A, Kramer B, and Marsh M [2003]. Infectious HIV-1 assembles in late endosomes in primary macrophages. J. Cell Biol., 162: 443–455.CrossRefGoogle Scholar
  5. Von Schwedler UK, et al. [2003]. The protein network of HIV budding. Cell, 114: 701–713.CrossRefGoogle Scholar

Hepatitis C Virus

  1. Bartenschlager R, and Lohmann V [2000]. Replication of hepatitis C virus. J. Gen. Virol., 81: 1631–1648.Google Scholar
  2. Goodbourn S, Didcock L, and Randall, RE [2000]. Interferons: Cell signalling, immune modulation, antiviral responses, and viral countermeasures. J. Gen. Virol., 81: 2341–2364.Google Scholar
  3. Katze MG, He YP, and Gale M, Jr. [2002]. Viruses and interferons: A fight for supremacy. Nature Rev. Immunol., 2: 675–687.CrossRefGoogle Scholar
  4. Large MK, Kittlesen DJ, and Hahn YS [1999]. Suppression of host immune response by the core protein of Hepatitis C virus: Possible implications for Hepatitis C virus persistence. J. Immunol., 162: 931–938.Google Scholar


  1. Boshoff C, and Weiss R [2002]. Aids-related malignancies. Nature Rev. Cancer, 2: 373–382.CrossRefGoogle Scholar
  2. Emerman M, and Malim MH [1998]. HIV-1 regulatory/accessory genes: Keys to unraveling viral and host biology. Science, 280: 1880–1884.CrossRefADSGoogle Scholar
  3. Gu YP, and Sundquist WI [2003]. Good to CU, Nature, 424: 21–22.CrossRefADSGoogle Scholar
  4. Jacotet E, et al. [2000]. Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein R and Bcl-2. J. Exp. Med., 193: 509–519.CrossRefGoogle Scholar
  5. Karn J [1999]. Tackling Tat. J. Mol. Biol., 293: 235–254.CrossRefGoogle Scholar
  6. Kwong, PD, et al. [2002]. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor binding sites. Nature, 420: 678–682.CrossRefADSGoogle Scholar
  7. Lum JJ [2003]. Vpr R77Q is associated with long-term nonprogressive HIV infection and impaired induction of apoptosis. J. Clin. Invest., 111: 1547–1554.CrossRefGoogle Scholar
  8. Marin M, et al. [2003]. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nature Med., 9: 1398–1403.CrossRefGoogle Scholar
  9. Sheehy AM, Gaddis NC, and Malim MH [2003]. The antiretroviral enzyme APOBEC3G is degraded by the proteosome in response to HIV-1 Vif. Nature Med., 9: 1404–1407.CrossRefGoogle Scholar
  10. Stevenson M [2003]. HIV-1 pathogenesis. Nature Med., 9: 853–860.CrossRefGoogle Scholar
  11. Swigut T, Shohdy N, and Skowronski J [2001]. Mechanism for downregulation of CD28 by Nef. EMBO J., 20: 1593–1604.CrossRefGoogle Scholar
  12. Swingler S, et al. [2003]. Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature, 424: 213–219.CrossRefADSGoogle Scholar
  13. Swingler S, et al. [1999]. HIV-Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nature Med., 5: 997–1003.CrossRefGoogle Scholar
  14. Wei XP, et al. [2003]. Antibody neutralization and escapes by HIV-1, Nature, 422: 307–312.CrossRefADSGoogle Scholar
  15. Wyatt R, and Sodroski J [1998]. The HIV-1 envelope glycoproteins: Fusogens, antigens and immunogens. Science, 280: 1884–1888.CrossRefADSGoogle Scholar


  1. Damania B, Choi JK, and Jung JU [2000]. Signaling activities of gammaherpesvirus membrane proteins. J. Virol. 74: 1593–1601.CrossRefGoogle Scholar
  2. Moore PS, and Chang Y [2001]. Molecular virology of Kaposi’s sarcoma-associated herpesvirus. Phil. Trans. R. Soc. Lond. B, 356: 499–516.CrossRefGoogle Scholar

Bacteriophage Lambda

  1. Bell CE, et al. [2000]. Crystal structure of the l repressor C-terminal domain provides a model for cooperative operator binding. Cell, 101: 801–811.CrossRefGoogle Scholar
  2. Campbell A [2003]. The future of bacteriophage biology. Nature Rev. Genet., 4: 471–477.CrossRefGoogle Scholar
  3. McAdams HH, and Shapiro L [1995]. Circuit simulation of genetic networks. Science, 269: 650–656.ADSCrossRefGoogle Scholar
  4. Ptashne M, and Gann A [1997]. Transcriptional activation by recruitment. Nature, 386: 569–577.CrossRefADSGoogle Scholar

Shiga Toxin

  1. O’Loughlin EV, and Robins-Brown RM [2001]. Effect of Shiga toxin and Shiga-like toxins on eukaryotic cells. Microbes Infect., 3: 493–507.CrossRefGoogle Scholar
  2. Wagner PL, and Waldor MK [2002]. Bacteriophage control of bacterial virulence. Infect. Immun., 70: 3985–3993.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations