Skip to main content

Cell Regulation in Bacteria

  • Chapter
  • 1054 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  • Gilmore MS, and Ferretti JJ [2003]. The thin line between gut commensal and pathogen. Science, 299: 1999–2002.

    Article  Google Scholar 

  • Whitman WB [1998]. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA, 95: 6578–6583.

    Article  ADS  Google Scholar 

  • Xu J, and Gordon JI [2003]. Honor thy symbionts. Proc. Natl. Acad. Sci. USA, 100: 10452–10459.

    Article  ADS  Google Scholar 

Gene Organizatio

  • Busby S, and Ebright RH [1994]. Promoter structure, promoter recognition and transcription activation in prokaryotes. Cell, 79: 743–746.

    Article  Google Scholar 

  • Ptashne M, and Gann A [1997]. Transcription activation by recruitment. Nature, 386: 569–577.

    Article  ADS  Google Scholar 

Sigma Factors

  • Cannon WV, Gallegos MT, and Buck M [2000]. Isomerization of a binary sigma-promoter DNA complex by transcription activators. Nature Struct. Biol., 7: 594–601.

    Article  Google Scholar 

  • Gralla JD [2000]. Signaling through sigma. Nature Struct. Biol., 7: 530–532.

    Article  Google Scholar 

  • Sharp MM [1999]. The interface of s with core RNA polymerase is extensive, conserved, and functionally specialized. Genes Dev., 13: 3015–3026.

    Article  Google Scholar 

Flagellar Assembly

  • Aldridge P, and Hughes KT [2002]. Regulation of flagellar assembly. Curr. Opin. Microbiol., 5: 160–165.

    Article  Google Scholar 

  • Chilcott GS, and Hughes KT [2000]. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica, Servovar typhimurium. and Escherichia coli. Micro. Mol. Biol. Rev., 64: 694–708.

    Article  Google Scholar 

  • Kalir S, et al. [2001]. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science, 292: 2080–2083.

    Article  Google Scholar 

Sporulation

  • Burbulys D, Trach KA, and Hoch JA [1991]. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell, 64: 545–552.

    Article  Google Scholar 

  • Fabret C, Feher VA, and Hoch JA [1999]. Two-component signal transduction in Bacillus subtilis: How one organism sees its world. J. Bacterial., 181: 1975–1983.

    Google Scholar 

  • Jiang M, et al. [2000]. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol., 38: 535–542.

    Article  Google Scholar 

  • Perego, M, Glaser P, and Hoch JA [1996]. Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis. Mol. Microbiol., 19: 1151–1157.

    Article  Google Scholar 

Cell Differentiation in Caulobacter

  • Domain IJ, Quon KC, and Shapiro L [1997]. Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell, 90: 415–424.

    Article  Google Scholar 

  • Jenal U [2000]. Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control. FEMS Microbiol. Revs., 24: 177–191.

    Article  Google Scholar 

  • Laub MT, et al. [2000]. Global analysis of the genetic network controlling a bacterial cell cycle. Science, 290: 2144–2148.

    Article  ADS  Google Scholar 

  • Quon KC, et al. [1998]. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sci. USA, 95: 120–125.

    Article  ADS  Google Scholar 

  • Shapiro L, McAdams HH, and Losick R [2002]. Generating and exploiting polarity in bacteria. Science, 298: 1942–1946.

    Article  ADS  Google Scholar 

Antigenic Variation

  • Barbour AG, and Restrepo BL [2000]. Antigenic variation in vector-borne pathogens. Emer. Infect. Dis., 6: 449–457.

    Article  Google Scholar 

Quorum Sensing

  • Davies DG, et al. [1998]. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280: 295–298.

    Article  ADS  Google Scholar 

  • Fuqua WC, Winans SC, and Greenberg EP [1994]. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol., 176: 269–275.

    Google Scholar 

  • Kleerbezem M, et al. [1997]. Quorum sensing by peptide pheromones and two-component signal transduction systems in Gram-positive bacteria. Mol. Miocrbiol., 24: 895–904.

    Article  Google Scholar 

  • Schauder S, and Bassler BL [2001]. The language of bacteria. Genes Dev., 15: 1468–1480.

    Article  Google Scholar 

  • Van Delden C, and Iglewski BH [1998]. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emer. Infect. Dis., 4: 551–560.

    Article  Google Scholar 

Biofilms and Disease

  • Anderson GG, et al. [2003]. Intracellular bacterial biofilm-like pods in urinary tract infections. Science, 301: 105–107.

    Article  ADS  Google Scholar 

  • Costerton JW, Stewart PS, and Greenberg EP [1999]. Bacterial biofilms: A common cause of persistent infections. Science, 284: 1318–1322.

    Article  ADS  Google Scholar 

  • Singh PK, et al. [2000]. Quorum sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407: 762–764.

    Article  ADS  Google Scholar 

Horizontal Gene Transfer, Antibiotic Resistance, and Bacteriophages

  • Casjens S [2003]. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol., 49: 277–300.

    Article  Google Scholar 

  • Frankel G, et al. [1998]. Enteropathogenic and enterohaemorrhagic Escherichia coli: More subversive elements. Mol. Microbiol., 30: 911–921.

    Article  Google Scholar 

  • Hacker J, Hentschel U, and Dobrindt U [2003]. Prokaryotic chromosomes and disease. Science, 301: 790–793.

    Article  ADS  Google Scholar 

  • Karaolis DKR, et al. [1999]. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature, 399: 375–379.

    Article  ADS  Google Scholar 

  • Koch AL [2003]. Bacterial walls as target for attack: Past, present and future research. Clin. Microbiol. Rev., 16: 673–687.

    Article  Google Scholar 

  • Lowy FD [2003]. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Invest., 111: 1265–1273.

    Article  Google Scholar 

  • Ochman H, Lawrence JG, and Groisman EA [2000]. Lateral gene transfer and the nature of bacterial innovation. Nature, 405: 299–304.

    Article  ADS  Google Scholar 

  • Wagner PL, and Waldor MK [2002]. Bacteriophage control of bacterial virulence. Infect. Immun., 70: 3985–3993.

    Article  Google Scholar 

Virulence Cassettes and Factors

  • Aizenman E, Engelberg-Kulka H, and Glaser G [1996]. An Escherichia coli chromosomal “addiction module” regulated by 3′,5′-bispyrophosphate: A model for programmed bacterial cell death. Proc. Natl. Acad. Sci. USA, 93: 6059–6063.

    Article  ADS  Google Scholar 

  • Cornelis GR, and Wolf-Watz H [1997]. The Yersinia Yop virulon: A bacterial system for subverting eukaryotic cells. Mol. Microbiol., 23: 861–867.

    Article  Google Scholar 

  • Groisman EA, and Ochman H [1996]. Pathogenicity islands: Bacterial evolution in quantum leaps. Cell, 87: 791–794.

    Article  Google Scholar 

Death Modules and Programmed Cell Death

  • González-Pastor JE, Hobbs EC, and Losick R [2003]. Cannibalism by sporulating bacteria. Science, 301: 510–513.

    Article  ADS  Google Scholar 

  • Webb JS, et al. [2003]. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol., 185: 4585–4592.

    Article  Google Scholar 

Suggested Reading

  • Dunlap JC [1999]. Molecular bases for circadian clocks. Cell, 96: 271–290.

    Article  Google Scholar 

  • Ishiura M, et al. [1998]. Expression of a gene cluster KaiABC as a circadian feedback process in cyanobacteria. Science, 281: 1519–1523.

    Article  ADS  Google Scholar 

  • Xu Y, Mori T, and Johnson CH [2003]. Cyanobacterial circadian clockwork: Roles of KaiA, KaiB and the KaiBC promoter in regulating KaiC. EMBO J., 22: 2117–2126.

    Article  Google Scholar 

  • Young MW, and Kay SA [2001]. Time zones: A comparative genetics of circadian clocks. Nature Rev. Genet., 2: 702–715.

    Article  Google Scholar 

Suggested Reading

  • Wall D, and Kaiser D [1999]. Type IV pili and cell motility. Mol. Microbiol., 32: 1–10.

    Article  Google Scholar 

  • Wolgemuth C, et al. [2002]. How myxobacteria glide. Curr. Biol., 12: 369–377.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Cell Regulation in Bacteria. In: Molecular and Cellular Signaling. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY . https://doi.org/10.1007/0-387-26015-3_17

Download citation

Publish with us

Policies and ethics