Advertisement

Cell Regulation in Bacteria

Chapter
  • 940 Downloads
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Keywords

Fruiting Body Horizontal Gene Transfer Cell Regulation Sigma Factor Necrotizing Fasciitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. Gilmore MS, and Ferretti JJ [2003]. The thin line between gut commensal and pathogen. Science, 299: 1999–2002.CrossRefGoogle Scholar
  2. Whitman WB [1998]. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA, 95: 6578–6583.CrossRefADSGoogle Scholar
  3. Xu J, and Gordon JI [2003]. Honor thy symbionts. Proc. Natl. Acad. Sci. USA, 100: 10452–10459.CrossRefADSGoogle Scholar

Gene Organizatio

  1. Busby S, and Ebright RH [1994]. Promoter structure, promoter recognition and transcription activation in prokaryotes. Cell, 79: 743–746.CrossRefGoogle Scholar
  2. Ptashne M, and Gann A [1997]. Transcription activation by recruitment. Nature, 386: 569–577.CrossRefADSGoogle Scholar

Sigma Factors

  1. Cannon WV, Gallegos MT, and Buck M [2000]. Isomerization of a binary sigma-promoter DNA complex by transcription activators. Nature Struct. Biol., 7: 594–601.CrossRefGoogle Scholar
  2. Gralla JD [2000]. Signaling through sigma. Nature Struct. Biol., 7: 530–532.CrossRefGoogle Scholar
  3. Sharp MM [1999]. The interface of s with core RNA polymerase is extensive, conserved, and functionally specialized. Genes Dev., 13: 3015–3026.CrossRefGoogle Scholar

Flagellar Assembly

  1. Aldridge P, and Hughes KT [2002]. Regulation of flagellar assembly. Curr. Opin. Microbiol., 5: 160–165.CrossRefGoogle Scholar
  2. Chilcott GS, and Hughes KT [2000]. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica, Servovar typhimurium. and Escherichia coli. Micro. Mol. Biol. Rev., 64: 694–708.CrossRefGoogle Scholar
  3. Kalir S, et al. [2001]. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science, 292: 2080–2083.CrossRefGoogle Scholar

Sporulation

  1. Burbulys D, Trach KA, and Hoch JA [1991]. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell, 64: 545–552.CrossRefGoogle Scholar
  2. Fabret C, Feher VA, and Hoch JA [1999]. Two-component signal transduction in Bacillus subtilis: How one organism sees its world. J. Bacterial., 181: 1975–1983.Google Scholar
  3. Jiang M, et al. [2000]. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol., 38: 535–542.CrossRefGoogle Scholar
  4. Perego, M, Glaser P, and Hoch JA [1996]. Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis. Mol. Microbiol., 19: 1151–1157.CrossRefGoogle Scholar

Cell Differentiation in Caulobacter

  1. Domain IJ, Quon KC, and Shapiro L [1997]. Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell, 90: 415–424.CrossRefGoogle Scholar
  2. Jenal U [2000]. Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control. FEMS Microbiol. Revs., 24: 177–191.CrossRefGoogle Scholar
  3. Laub MT, et al. [2000]. Global analysis of the genetic network controlling a bacterial cell cycle. Science, 290: 2144–2148.CrossRefADSGoogle Scholar
  4. Quon KC, et al. [1998]. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sci. USA, 95: 120–125.CrossRefADSGoogle Scholar
  5. Shapiro L, McAdams HH, and Losick R [2002]. Generating and exploiting polarity in bacteria. Science, 298: 1942–1946.CrossRefADSGoogle Scholar

Antigenic Variation

  1. Barbour AG, and Restrepo BL [2000]. Antigenic variation in vector-borne pathogens. Emer. Infect. Dis., 6: 449–457.CrossRefGoogle Scholar

Quorum Sensing

  1. Davies DG, et al. [1998]. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280: 295–298.CrossRefADSGoogle Scholar
  2. Fuqua WC, Winans SC, and Greenberg EP [1994]. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol., 176: 269–275.Google Scholar
  3. Kleerbezem M, et al. [1997]. Quorum sensing by peptide pheromones and two-component signal transduction systems in Gram-positive bacteria. Mol. Miocrbiol., 24: 895–904.CrossRefGoogle Scholar
  4. Schauder S, and Bassler BL [2001]. The language of bacteria. Genes Dev., 15: 1468–1480.CrossRefGoogle Scholar
  5. Van Delden C, and Iglewski BH [1998]. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emer. Infect. Dis., 4: 551–560.CrossRefGoogle Scholar

Biofilms and Disease

  1. Anderson GG, et al. [2003]. Intracellular bacterial biofilm-like pods in urinary tract infections. Science, 301: 105–107.CrossRefADSGoogle Scholar
  2. Costerton JW, Stewart PS, and Greenberg EP [1999]. Bacterial biofilms: A common cause of persistent infections. Science, 284: 1318–1322.CrossRefADSGoogle Scholar
  3. Singh PK, et al. [2000]. Quorum sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407: 762–764.CrossRefADSGoogle Scholar

Horizontal Gene Transfer, Antibiotic Resistance, and Bacteriophages

  1. Casjens S [2003]. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol., 49: 277–300.CrossRefGoogle Scholar
  2. Frankel G, et al. [1998]. Enteropathogenic and enterohaemorrhagic Escherichia coli: More subversive elements. Mol. Microbiol., 30: 911–921.CrossRefGoogle Scholar
  3. Hacker J, Hentschel U, and Dobrindt U [2003]. Prokaryotic chromosomes and disease. Science, 301: 790–793.CrossRefADSGoogle Scholar
  4. Karaolis DKR, et al. [1999]. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature, 399: 375–379.CrossRefADSGoogle Scholar
  5. Koch AL [2003]. Bacterial walls as target for attack: Past, present and future research. Clin. Microbiol. Rev., 16: 673–687.CrossRefGoogle Scholar
  6. Lowy FD [2003]. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Invest., 111: 1265–1273.CrossRefGoogle Scholar
  7. Ochman H, Lawrence JG, and Groisman EA [2000]. Lateral gene transfer and the nature of bacterial innovation. Nature, 405: 299–304.CrossRefADSGoogle Scholar
  8. Wagner PL, and Waldor MK [2002]. Bacteriophage control of bacterial virulence. Infect. Immun., 70: 3985–3993.CrossRefGoogle Scholar

Virulence Cassettes and Factors

  1. Aizenman E, Engelberg-Kulka H, and Glaser G [1996]. An Escherichia coli chromosomal “addiction module” regulated by 3′,5′-bispyrophosphate: A model for programmed bacterial cell death. Proc. Natl. Acad. Sci. USA, 93: 6059–6063.CrossRefADSGoogle Scholar
  2. Cornelis GR, and Wolf-Watz H [1997]. The Yersinia Yop virulon: A bacterial system for subverting eukaryotic cells. Mol. Microbiol., 23: 861–867.CrossRefGoogle Scholar
  3. Groisman EA, and Ochman H [1996]. Pathogenicity islands: Bacterial evolution in quantum leaps. Cell, 87: 791–794.CrossRefGoogle Scholar

Death Modules and Programmed Cell Death

  1. González-Pastor JE, Hobbs EC, and Losick R [2003]. Cannibalism by sporulating bacteria. Science, 301: 510–513.CrossRefADSGoogle Scholar
  2. Webb JS, et al. [2003]. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol., 185: 4585–4592.CrossRefGoogle Scholar

Suggested Reading

  1. Dunlap JC [1999]. Molecular bases for circadian clocks. Cell, 96: 271–290.CrossRefGoogle Scholar
  2. Ishiura M, et al. [1998]. Expression of a gene cluster KaiABC as a circadian feedback process in cyanobacteria. Science, 281: 1519–1523.CrossRefADSGoogle Scholar
  3. Xu Y, Mori T, and Johnson CH [2003]. Cyanobacterial circadian clockwork: Roles of KaiA, KaiB and the KaiBC promoter in regulating KaiC. EMBO J., 22: 2117–2126.CrossRefGoogle Scholar
  4. Young MW, and Kay SA [2001]. Time zones: A comparative genetics of circadian clocks. Nature Rev. Genet., 2: 702–715.CrossRefGoogle Scholar

Suggested Reading

  1. Wall D, and Kaiser D [1999]. Type IV pili and cell motility. Mol. Microbiol., 32: 1–10.CrossRefGoogle Scholar
  2. Wolgemuth C, et al. [2002]. How myxobacteria glide. Curr. Biol., 12: 369–377.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations