Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Homologous Recombination Adenomatous Polyposis Coli Nucleotide Excision Repair Fanconi Anemia Retinoblastoma Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading


  1. McCawley LJ, and Matrisian LM [2001]. Matrix metalloproteinases: They’re not just for matrix anymore! Curr. Opin. Cell Biol., 13: 534–540.CrossRefGoogle Scholar
  2. Nagase H, and Woessner JF, Jr [1999]. Matrix metalloproteinases. J. Biol. Chem., 274: 21491–21494.CrossRefGoogle Scholar
  3. Stamenkovic I [2003]. Extracellular matrix remodeling: The role of matrix metalloproteinases. J. Pathol., 200: 448–464.CrossRefGoogle Scholar

Growth Factor Signaling

  1. Birchmeier C, et al. [2003]. MET, metastasis, motility and more. Nature Rev. Mol. Cell Biol., 4: 915–925.CrossRefGoogle Scholar
  2. Blume-Jensen P, and Hunter T [2001]. Oncogenic kinase signaling. Nature, 411: 355–365.CrossRefADSGoogle Scholar
  3. Downward J [2003]. Targeting Ras signaling pathways in cancer therapy. Nature Rev. Cancer, 3: 11–22.CrossRefGoogle Scholar

Growth Factor Receptor, and Adhesion Molecule Cooperativity

  1. Comoglio PM, Boccaccio C, and Trusolino L [2003]. Interactions between growth factor receptors and adhesion molecules: Breaking the rules. Curr. Opin. Cell Biol., 15: 565–571.CrossRefGoogle Scholar
  2. Conacci-Sorrell M, Zhurinsky J, and Ben-Ze’ev A [2002]. The cadherin-catenin adhesion system in signaling and cancer. J. Clin. Invest., 109: 987–991.CrossRefGoogle Scholar
  3. Hood JD, and Cheresh DA [2002]. Role of integrins in cell invasion and migration. Nature Rev. Cancer, 2: 91–100.CrossRefGoogle Scholar

Developmental Pathways

  1. Fearnhead NS, Britton MP, and Bodmer WF [2001]. The ABC of APC. Human Mol. Genet., 10: 721–733.CrossRefGoogle Scholar
  2. Giles RH, van Es JH, and Clevers H [2003]. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta, 1653: 1–24.Google Scholar
  3. Massagué J, Blain SW, and Lo RS [2000]. TGFb signaling in growth control, cancer and heritable disorders. Cell, 103: 295–309.CrossRefGoogle Scholar
  4. Peifer M, and Polakis P [2000]. Wnt signaling in oncogenesis and embryogenesis-A look outside the nucleus. Science, 287: 1606–1609.CrossRefADSGoogle Scholar
  5. Taipale J, and Beachy PA [2001]. The Hedgehog and Wnt signalling pathways in cancer. Nature, 411: 349–354.CrossRefADSGoogle Scholar

DNA Repair Mechanisms

  1. Critchlow SE, and Jackson SP [1998]. DNA end-joining: From yeast to man. Trends Biochem. Sci., 23: 394–398.CrossRefGoogle Scholar
  2. De Laat WL, Jaspers NGL, and Hoeijmakers JHJ [1999]. Molecular mechanisms of nucleotide excision repair. Genes Dev., 13: 768–785.CrossRefGoogle Scholar
  3. Hoeijmakers JHJ [2001]. Genome maintenance mechanisms for preventing cancer. Nature, 411: 366–374.CrossRefADSGoogle Scholar
  4. Kanaar R, Hoeijmakers JHJ, and van Gent DC [1998]. Molecular mechanisms of DNA double-strand break repair. Trends Cell Biol., 8: 483–489.CrossRefGoogle Scholar
  5. Lindahl T, and Wood RD [1999]. Quality control by DNA repair. Science, 286: 1897–1904.CrossRefGoogle Scholar
  6. Yang W [2000]. Structure and function of mismatch repair proteins. Mutation Res.—DNA Repair, 460: 245–256.CrossRefGoogle Scholar

Double-Strand-Break Repair

  1. D’Amours D, and Jackson SP [2002]. The Mre11 complex: At the crossroads of DNA repair and checkpoint signaling. Nature Rev. Mol. Cell Biol., 3: 317–327.CrossRefGoogle Scholar
  2. D’Andrea AD, and Grompe M [2003]. The Fanconi anaemia/BRCA pathway. Nature Rev. Cancer, 3: 23–34.CrossRefGoogle Scholar
  3. Hopfner KP, et al. [2002]. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature, 418: 562–566.CrossRefADSGoogle Scholar
  4. Leuther KK, et al. [1999]. Structure of DNA-dependent protein kinase: Implications for its regulation by DNA. EMBO J., 18: 1114–1123.CrossRefGoogle Scholar
  5. Song BW, and Sung P [2000]. Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J. Biol. Chem., 275: 15895–15904.CrossRefGoogle Scholar
  6. Yang HJ, et al. [2002]. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science, 297: 1837–1848.CrossRefADSGoogle Scholar

The ATM Protein

  1. Bakkenist CJ, and Kasten MB [2003]. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation, Nature, 421: 499–506.CrossRefADSGoogle Scholar
  2. Shiloh Y [2003]. ATM and related protein kinases: Safeguarding genome integrity. Nature Rev. Cancer, 3: 155–168.CrossRefGoogle Scholar

The Cell Cycle, E2Fs, and the Retinoblastoma Protein

  1. Dyson N [1998]. The regulation of E2F by pRb-family proteins. Genes Dev., 12: 2245–2262.CrossRefGoogle Scholar
  2. Harbour JW, et al. [1999]. cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell, 98: 859–869.CrossRefGoogle Scholar
  3. Malumbres M, and Barbacid M [2001]. To cycle or not to cycle: A critical decision in cancer. Nature Rev. Cancer, 1: 222–231.CrossRefGoogle Scholar
  4. Muller H, and Helin K [2000]. The E2F transcription factors: Key regulators of cell proliferation. Biochim. Biophys. Acta., 1470: M1–M12.Google Scholar
  5. Muller H, et al. [2001]. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev., 15: 267–285.CrossRefGoogle Scholar
  6. Sherr CJ [2000]. The Pezcoller Lecture: Cancer cell cycles revisited. Cancer Res., 60: 3689–3695.ADSGoogle Scholar
  7. Weinberg RA [1995]. The retinoblastoma protein and cell-cycle control. Cell, 81: 323–330.CrossRefGoogle Scholar
  8. Espinosa JM, and Emerson BM [2001]. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol. Cell, 8: 57–69.CrossRefGoogle Scholar
  9. Sherr CJ [2001]. The INK4a/ARF network in tumor suppression. Nature Rev. Mol. Cell Biol., 2: 731–737.CrossRefADSGoogle Scholar
  10. Vogelstein B, Lane D, and Levine AJ [2000]. Surfing the p53 network. Nature, 408: 307–310.CrossRefADSGoogle Scholar
  11. Vousden KH, and Lu X [2002]. Live or let die: The cell’s response to p53. Nature Rev. Cancer, 2: 594–604.CrossRefGoogle Scholar

Telomere Maintenance

  1. Blackburn EH [2001]. Switching and signaling at the telomere. Cell, 106: 661–673.CrossRefGoogle Scholar
  2. Chan SWL, and Blackburn EH [2002]. New ways to make ends meet: Telomerase, DNA damage proteins and heterochromatin. Oncogene, 21: 553–563.CrossRefGoogle Scholar
  3. De Lange T [2002]. Protection of mammalian telomeres. Oncogene, 21: 532–540.CrossRefGoogle Scholar
  4. Itahana K, Dimri G, and Campisi J [2001]. Regulation of cellular senescence by p53. Eur. J. Biochem., 268: 2784–2791.CrossRefGoogle Scholar
  5. Maser RS, and DePinho RA [2002]. Connecting chromosomes, crisis and cancer. Science, 297: 565–569.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations