Skip to main content

Signaling in the Endocrine and Nervous Systems Through GPCRs

  • Chapter
Molecular and Cellular Signaling

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1067 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

G Protein-Coupled Receptors

  • Baldwin JM, Schertler GFX, and Unger VM [1997]. An alpha carbon template for the transmembrane helices in the rhodopsin family of G protein-coupled receptors. J. Mol. Biol., 272: 144–164.

    Article  Google Scholar 

  • Bockaert J, and Pin JP [1999]. Molecular tinkering of G protein-coupled receptors: An evolutionary success. EMBO J., 18: 1723–1729.

    Article  Google Scholar 

  • Gether U [2000]. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev., 21: 90–113.

    Article  Google Scholar 

  • Gether U, and Kobilka BK [1998]. G protein-coupled receptors II: Mechanism of agonist activation. J. Biol. Chem., 273: 17979–17982.

    Article  Google Scholar 

  • Ji TH, Grossmann M, and Ji I [1998]. G protein-coupled receptors I: Diversity of receptor-ligand interactions. J. Biol. Chem., 273: 17299–17302.

    Article  Google Scholar 

  • Palczewski K, et al. [2000]. Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289: 739–745.

    Article  ADS  Google Scholar 

GPCR Regulation

  • Bockaert J, et al. [2003]. The ‘magic tail’ of G protein-coupled receptors: An anchorage for functional protein networks. FEBS Lett., 546: 65–72.

    Article  Google Scholar 

  • Grimes ML, and Miettinen HM [2003]. Receptor tyrosine kinase and G proteincoupled receptor signaling and sorting within endosomes. J. Neurochem., 84: 905–918.

    Article  Google Scholar 

  • Hall RA, and Lefkowitz RJ [2002]. Regulation of G protein-coupled receptor signaling by scaffold proteins. Circ. Res., 91: 672–680.

    Article  Google Scholar 

  • Hall RA, Premont RT, and Lefkowitz RJ [1999]. Heptahelical receptor signaling: Beyond the G protein paradigm. J. Cell Biol., 145: 927–932.

    Article  Google Scholar 

  • Koenig JA, and Edwardson JM [1997]. Endocytosis and recycling of G proteincoupled receptors. Trends Pharmacol. Sci., 18: 276–287.

    Google Scholar 

  • Lefkowitz RJ [1998]. G protein-coupled receptors III: New roles for receptor kinases and arrestins in receptor signaling and desensitization. J. Biol. Chem., 273: 18677–18680.

    Article  Google Scholar 

  • Lodowski DT, et al. [2003]. Keeping G proteins at bay: A complex between G protein-coupled receptor kinase 2 and Gbg. Science 300: 1256–1262.

    Article  ADS  Google Scholar 

  • Luttrell LM, and Lefkowitz RJ [2002]. The role of b-arrestins in the termination and transduction of G protein-coupled receptor signals. J. Cell Sci., 115: 455–465.

    Google Scholar 

G Proteins and Their Effectors

  • Hamm HE [1998]. The many faces of G protein signaling. J. Biol. Chem., 273: 669–672.

    Article  Google Scholar 

  • Wedegaertner PB, Wilson PT, and Bourne HR [1995]. Lipid modifications of trimeric G proteins. J. Biol. Chem., 270: 503–506.

    Article  Google Scholar 

Adenylyl Cyclases and Nucleotide Phosphodiesterases

  • Beavo JA [1995]. Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms. Physiol. Rev., 75: 725–748.

    Google Scholar 

  • Cooper DMF, Mons N, and Karpen JW [1995]. Adenylyl cyclases and the interaction between calcium and cAMP signaling. Nature, 374: 421–424.

    Article  ADS  Google Scholar 

  • Houslay MD, and Milligan G [1997]. Tailoring cAMP-signaling responses through isoform multiplicity. Trends Biochem. Sci., 22: 217–224.

    Article  Google Scholar 

  • Taussig R, and Gilman AG [1995]. Mammalian membrane-bound adenylyl cyclases. J. Biol. Chem., 270: 1–4.

    Article  Google Scholar 

The Somatosensory System and Nociception

  • Marceau F, Hess JF, and Bachvarov DR [1998]. The B1 receptors for kinins. Pharmacol. Rev., 50: 357–386.

    Google Scholar 

  • Negishi M, Sugimoto Y, and Ichikawa A [1995]. Molecular mechanisms of diverse actions of prostanoid receptors. Biochem. Biophys. Acta, 1259: 109–120.

    Google Scholar 

  • Smith WL, Garavito RM, and DeWitt DL [1996]. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and-2. J. Biol. Chem., 271: 33157–33160.

    Article  Google Scholar 

Phototransduction

  • Baylor D [1996]. How photons start vision. Proc. Natl. Acad. Sci. USA, 93: 560–565.

    Article  ADS  Google Scholar 

  • Clapham DE, Runnels LW, and Strübing C [2001]. The Trp ion channel family. Nature Rev. Neurosci., 2: 387–396.

    Article  Google Scholar 

  • Hardie RC, and Raghu P [2001]. Visual transduction in Drosophila. Nature, 413: 186–193.

    Article  ADS  Google Scholar 

  • Kramer RH, and Molokanova E [2001]. Modulation of cyclic-nucleotide-gated channels and regulation of vertebrate phototransduction. J. Exp. Biol., 204: 2921–2931.

    Google Scholar 

Odorants and Pheromones

  • Buck LB [2000]. The molecular architecture of odor and pheromone sensing in mammals. Cell, 100: 611–618.

    Article  Google Scholar 

  • Clyne PJ, et al. [1999]. A novel family of divergent seven-transmembrane proteins: Candidate ororant receptors in Drosophila. Neuron, 22: 327–338.

    Article  Google Scholar 

  • Firestein S [2001]. How the olfactory system makes sense of scents. Nature, 413: 211–218.

    Article  ADS  Google Scholar 

  • Malnic B, et al. [1999]. Combinatorial receptor codes for odors. Cell, 96: 713–723.

    Article  Google Scholar 

  • Zhao HQ, et al. [1998]. Functional expression of a mammalian odorant receptor. Science, 279: 237–242.

    Article  ADS  Google Scholar 

Tastants

  • Adler E, et al. [2000]. A novel family of mammalian taste receptors. Cell, 100: 693–702.

    Article  Google Scholar 

  • Chandrashekar J, et al. [2000]. T2Rs function as bitter taste receptors. Cell, 100: 703–711.

    Article  Google Scholar 

  • Chaudhari N, Landin AM, and Roper SD [2000]. A metabotropic glutamate receptor variant functions as a taste receptor. Nature Neurosci., 3: 113–119.

    Article  Google Scholar 

  • Lindemann B [2001]. Receptors and transduction in taste. Nature, 413: 219–225.

    Article  ADS  Google Scholar 

  • Margolskee RF [2002]. Molecular mechanisms of bitter and sweet taste transduction. J. Biol. Chem., 277: 1–4.

    Article  Google Scholar 

  • Nelson G, et al. [2001]. Mammalian sweet taste receptors. Cell, 106: 381–390.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Signaling in the Endocrine and Nervous Systems Through GPCRs. In: Molecular and Cellular Signaling. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY . https://doi.org/10.1007/0-387-26015-3_12

Download citation

Publish with us

Policies and ethics