Skip to main content

Curvature and basis function effects on electronic and transport properties of carbon nanotubes

  • Chapter
Complex Inorganic Solids
  • 1938 Accesses

Abstract

Curvature effects are shown to distinguish carbon nanotubes from graphitic carbon in qualitative ways. In particular, bonding geometries and magnetic moments are found to be sensitively dependent on curvature. Furthermore, our work also reveals that use of full orbital basis set is necessary for realistic calculations of quantum conductance of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. R. Saito, G. Dresselhaus and M.S. Dresselhaus, Phys. Rev. B61, 2981 (2000).

    Google Scholar 

  3. H.J. Choi, J. Jhm, S.G. Louie and M.L. Cohen, Phys. Rev. Lett., 84, 2917, (2000).

    Article  CAS  Google Scholar 

  4. A. Rochefort, Ph. Avouris, F. Lesage and D.R. Salahub, Phys. Rev. B60, 13824 (1999).

    Google Scholar 

  5. D. Orlikowski, M.B. Nardelli, J. Bernholc and C. Roland, Phys. Rev. B61, 14194 (2000).

    Google Scholar 

  6. A.N. Andriotis, M. Menon and G.E. Prudakis, Phys. Rev. Lett., 85, 3193 (2000).

    Article  CAS  Google Scholar 

  7. A. N. Andriotis, M. Menon, D. Srivastava, and L. Chernozatonskii, Phys. Rev. Lett. 87, 066802 (2001).

    Article  CAS  Google Scholar 

  8. A. N. Andriotis and M. Menon, Phys. Rev. B57, 10069 (1998).

    Google Scholar 

  9. D.M. Duffy and J.A. Blackman, Phys. Rev. B58, 7443 (1998).

    Google Scholar 

  10. P. Kruger, J.C. Parlebas and A. Kotani, Phys. Rev. B59, 15093 (1999).

    Google Scholar 

  11. A.N. Andriotis, M. Menon and G.E. Froudakis, Phys. Rev. B62, 9867 (2000).

    Google Scholar 

  12. A. N. Andriotis and M. Menon, Phys. Rev. B60, 4521 (1999).

    Google Scholar 

  13. S. Nagao, T. Kurikawa, k. Miyajima, A. Nakajima and k. Kaya, J. Chem. Phys. A102, 4495 (1998).

    Google Scholar 

  14. T. Kurikawa, S. Nagao, K. Miyajima, A. Nakajima and K. Kaya, J. Chem. Phys. A102, 1743 (1998).

    Google Scholar 

  15. A. Nakajima, S. Nagao, H. Takeda, T. Kurikawa and K. Kaya, J. Chem. Phys. 107, 6491 (1997).

    Article  CAS  Google Scholar 

  16. E.K. Parks, K.P. Kerns, S.J. Riley and B.J. Winter Phys. Rev. B59, 13431 (1999).

    Google Scholar 

  17. P. Mathur, I. J. Mavunkal and S.B. Umbarkar, Journal of Clus. Sci., 9, 393 (1998).

    Article  CAS  Google Scholar 

  18. A. N. Andriotis, M. Menon and G. E. Froudakis, Appl. Phys. Lett., 76, 3890, (2000).

    Article  CAS  Google Scholar 

  19. J. E. Inglesfield, J. Phys. C 14, 3795 (1981).

    Article  CAS  Google Scholar 

  20. A. J. Fisher, J. Phys.: Condens. Matter, 2, 6079 (1990).

    Article  Google Scholar 

  21. A. N. Andriotis, Europhys. Lett. 17, 349 (1992); A.N.Andriotis, J. Phys. Condens. Matter, 2, 6079 (1990).

    Article  Google Scholar 

  22. S. Sanvito, C.J. Lambert, J.H. Jefferson and A.M. Bratkovsky, Phys. Rev. B59, 11936 (1999).

    Google Scholar 

  23. A. N. Andriotis and M. Menon, J. Chem. Phys., 115, 2737 (2001).

    Article  CAS  Google Scholar 

  24. S. Datta, in Electronic Transport in Mesoscopic Systems, Cambridge Univ. Press, Cambridge (1995).

    Google Scholar 

  25. M.P. Samanta, W. Tian, S. Datta, J.I. Henderson and C.P. Kubiak, Phys. Rev. B53, R7626 (1996).

    Google Scholar 

  26. M.B. Nardelli, Phys. Rev. B60, 7828 (1999).

    Google Scholar 

  27. W. Tian, S. Datta, S. Hong, R. Reifenberger, J. I. Henderson and C. P. Kubiak, J. Chem. Phys. 109, 2874 (1998).

    Article  CAS  Google Scholar 

  28. Antonis N. Andriotis, M. Menon, and George E. Froudakis, Phys. Rev. B61, R13393 (2000).

    Google Scholar 

  29. A. N. Andriotis, M. Menon, and G. E. Froudakis, Phys. Rev. Lett., 85, 3193 (2000).

    Article  CAS  Google Scholar 

  30. J. Li, C. Papadopoulos and J. Xu, Nature, 402, 253 (1999).

    CAS  Google Scholar 

  31. B. C. Satishkumar, P. J. Thomas, A. Govindraj, and C. N. R. Rao, Appl. Phys. Lett. 77 2530 (2000).

    Article  CAS  Google Scholar 

  32. C. Papadopoulos, A. Rakitin, J. Li, A.S. Vedeneev and J.M. Xu, Phys. Rev. Lett. 85, 3476 (2000).

    Article  CAS  Google Scholar 

  33. G.E. Froudakis, M. Muhlhauser, A.N. Andriotis and M. Menon, Phys. Rev. B64, 2421401(R) (2001).

    Google Scholar 

  34. A. N. Andriotis, M. Menon, D. Srivastava and L. Chernozatonskii, Phys. Rev. Lett., 87, 066802 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Andriotis, A.N., Menon, M. (2005). Curvature and basis function effects on electronic and transport properties of carbon nanotubes. In: Turchi, P.E.A., Gonis, A., Rajan, K., Meike, A. (eds) Complex Inorganic Solids. Springer, Boston, MA. https://doi.org/10.1007/0-387-25953-8_19

Download citation

Publish with us

Policies and ethics