Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGhee JR, Lamm ME, Strober W. Mucosal immune responses: an overview. In: Ogra RL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd edn. San Diego: Academic Press, 1999: 485–506.

    Google Scholar 

  2. Strobel S, Mowat AM. Immune responses to dietary antigens: oral tolerance. Immunol Today 1998; 19: 173–81.

    PubMed  CAS  Google Scholar 

  3. Blumberg RS, Saubermann LJ, Strober W. Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Gastroenterol 1999; 11: 648–56.

    CAS  Google Scholar 

  4. Strober W, Blumberg RS. Inflammatory bowel diseases. J Am Med Assoc 2001; 285: 643–7.

    Google Scholar 

  5. Drasar BS, Barrow PA. Intestinal microbiology. In: Aspects of microbiology 10 [monograph]. Am Soc Microbiol. Berkshire, UK, 1985.

    Google Scholar 

  6. Sutherland L, Singleton J, Sessions J et al. Double blind, placebo-controlled trial of metronidazole in Crohn’s disease. Gut 1991; 32: 1071.

    PubMed  CAS  Google Scholar 

  7. Rutgeerts P, Geboes K, Peeters M et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 1991; 338: 771.

    PubMed  CAS  Google Scholar 

  8. Shanahan F. Probiotics and inflammatory bowel disease: is there a scientific rationale? Inflam Bowel Dis 20; 6: 107–15.

    Google Scholar 

  9. Sartor RB. Enteric microflora in IBD: pathogens or commensals? Inflam Bowel Dis 1997; 3: 230.

    Google Scholar 

  10. Fox J. Enterohepatic helicobacters: natural and experimental models. Ital J Gastroenterol Hepatol 1998; 30: S264–9.

    PubMed  Google Scholar 

  11. Dielman LA, Arends A, Tonkonogy SL et al. Helicobacter hepaticus does not induce or potentiate colitis in interleukin-10-deficient mice. Infect Immun 20; 68: 5107–13.

    Google Scholar 

  12. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Buschenfelde K-H. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol 1995; 102: 448–55.

    Article  PubMed  CAS  Google Scholar 

  13. Savage DC. Mucosal microbiota. In: Ogra RL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd edn. San Diego: Academic Press, 1999: 19–30.

    Google Scholar 

  14. Onderdonk AB. Intestinal microflora and inflammatory bowel disease. In: Kirsner, J and Shorter RG, eds. Inflammatory Bowel Disease, 5th edn. Baltimore: Williams & Wilkins, 2000: 144–52.

    Google Scholar 

  15. Sartor RB. Microbial factors in the pathogenesis of Crohn’s Disease, ulcerative colitis, and experimental intestinal inflammation. In: Kirsner, J and Shorter RG, eds. Inflammatory Bowel Disease, 5th edn. Baltimore: Williams & Wilkins, 2000: 153–78.

    Google Scholar 

  16. Theron J, Cloete TE. Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 20; 26: 37–57.

    Google Scholar 

  17. Schmidt TM, Relman DA. Phylogenetic identification of uncultured pathogens using ribosomal RNA sequences. Methods Enzymol 1994; 235: 205–22.

    PubMed  CAS  Google Scholar 

  18. Kolbert CP, Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol 1999; 2: 299–305.

    PubMed  CAS  Google Scholar 

  19. Tannock GW. Analysis of the intestinal microflora: a renaissance. Antonie Van Leeuwenhoek 1999; 76: 265–78.

    PubMed  CAS  Google Scholar 

  20. Gorbach SL, Plaut AG, Nahas L et al. Studies of intestinal microflora. II. Microorganisms of the small intestine and theirrelations to oral and fecal flora. Gastroenterology 1967; 73: 856.

    Google Scholar 

  21. Warren JR, Marshall BJ. Unidentified curved bacilli on gastric epithelium in active gastritis. Lancet. 1983; 1: 1273–5.

    Google Scholar 

  22. Drasar BS, Shiner M, McLeod GM. Studies on the intestinal flora. I. The bacterial flora of the gastrointestinal tract in healthy and achlorhydric persons. Gastroenterology 1969; 56: 71–9.

    PubMed  CAS  Google Scholar 

  23. Banerjee S, LaMont JT. Treatment of gastrointestinal infections. Gastroenterology 20; 118: 548–67.

    Google Scholar 

  24. Onderdonk AB, Hermos JA, Bartlett JG. The role of the intestinal microflora in experimental colitis. Am J Clin Nutr 1977; 30: 1819.

    PubMed  CAS  Google Scholar 

  25. Van de Merwe JP, Schroder AM, Wesninck F et al. The obligate anaerobic faecal flora of patients with Crohn’s disease and their first-degree relatives. Scand J Gastroenterol 1988; 23: 1125.

    PubMed  Google Scholar 

  26. Burke DA, Axon ATR. Adhesive Escherichia coli in inflammatory bowel disease and infective diarrhea. Br Med J 1988; 297: 102.

    CAS  Google Scholar 

  27. Lee C, Mekalanos J. Bacterial interactions with intestinal epithelial cells. In: Ogra RL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd edn. San Diego: Academic Press, 1999: 657–69.

    Google Scholar 

  28. Roediger WEW, Duncanb A, Kapaniris OK et al. Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology 1993; 104: 803.

    Google Scholar 

  29. Breuer RI, Soergel KH, Lashner B et al. Short chain fatty acid rectal irrigation for left-sided ulcerative colitis: a randomized, placebo controlled trial. Gut 1997; 40: 485.

    PubMed  CAS  Google Scholar 

  30. Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science. 1996; 272: 50–4.

    PubMed  CAS  Google Scholar 

  31. Sartor RB, Rath HC, Sellon RK. Microbial factors in chronic intestinal inflammation. Curr Opin Gastroenterol 1996; 12: 327.

    Google Scholar 

  32. Abreu-Martin MT, Targan SR. Regulation of immune responses of the intestinal mucosa. Crit Rev Immunol 1996; 16: 277–309.

    PubMed  CAS  Google Scholar 

  33. Germain R. MHC-dependent antigen processing and pep-tide presentation: providing ligands for T lymphocyte activation. Cell. 1994; 76: 287–99.

    PubMed  CAS  Google Scholar 

  34. Blumberg R, Gerdes D, Chott A, Porcelli S, Balk S. Structure and function of the CD1 family of MHC-like cell surface proteins. Immunol Rev. 1995; 147: 5–29.

    PubMed  CAS  Google Scholar 

  35. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998; 115: 182–205.

    PubMed  CAS  Google Scholar 

  36. Chott A, Gross GG, Probert C, Schwartz VL, Blumberg RS, Balk SP. Analysis of T cell antigen receptor expression by intestinal mucosa lymphocytes demonstrates a common junctional motif among CD8+ T cells in ulcerative colitis. J Immunol 1996a; 156: 3024–35.

    PubMed  CAS  Google Scholar 

  37. Probert CS, Chott A, Turner JR, Bodinaku K, Elson CO, Balk SP, Blumberg RS. Persistent clonal expansions of peripheral blood CD4+ lymphocytes in chronic inflammatory bowel disease. J Immunol 1996b; 157: 3182–91.

    Google Scholar 

  38. Mizoguchi A, Mizoguchi E, Saubermann SJ, Higaki K, Blumberg RS, Bhan AK. Limited CD4+ T cell diversity associated with colitis in T cell receptor α mutant mice requires α T helper 2 environment. Gastroenterology 20; 119: 983–95.

    Google Scholar 

  39. Cohavy O, Harth G, Horwitz M et al. Identification of a novel mycobacterial histone H 1 homologue (HupB) as an antigenic target of pANCA monoclonal antibody and serum immunoglobulin A from patients with Crohn’s disease. Infect Immun 1999; 67: 7510–17.

    Google Scholar 

  40. Kraehenbuhl JP, Neutra MR. Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol 20; 16: 301–32.

    Google Scholar 

  41. Davis IC, Owen RL. The immunopathology of M cells. Springer Sem Immunopathol 1997; 18: 421–48.

    CAS  Google Scholar 

  42. Cone RA. Mucus. In: Ogra RL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd edn. San Diego: Academic Press, 1999: 43–64.

    Google Scholar 

  43. Mitic LL, Van Itallie CM, Anderson JM. Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol Gastrointest Liver Physiol 120; 279: G250–4.

    Google Scholar 

  44. Colgan SP, Parkos CA, Matthews JB et al. Interferon-γ induces a cell surface phenotype switch on T84 intestinal epithelial cells. Am J Physiol 1994; 267: C402–10.

    PubMed  CAS  Google Scholar 

  45. Zund G, Madara JL, Dzus AL, Awtrey CS, Colgan SP. Interleukin-4 and interleukin-13 differentially regulate epithelial chloride secretion. J Biol Chem 1996; 271: 7460–4.

    PubMed  CAS  Google Scholar 

  46. Colgan SP, Hershberg RM, Furuta GT, Blumberg RS. Ligation of epithelial CD1d by antibody crosslinking induces bioactive IL-10; critical role of the cytoplasmic tail in autocrine signaling. Proc Natl Acad Sci USA 1999; 96: 13938–43.

    PubMed  CAS  Google Scholar 

  47. Liu Y, Nusrat A, Schnell FJ et al. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 20; 113: 2363–74.

    Google Scholar 

  48. Kinugasa T, Sakaguchi T, Gu X, Reinecker HC. Claudins regulate the intestinal barrier in responseto immune mediators. Gastroenterology 20; 118: 1001–11.

    Google Scholar 

  49. Miki K, Moore DJ, Butler RN, Southcott E, Couper RTG, Davidson GP. The sugar permeability test reflects disease activity in children and adolescents with inflammatory bowel disease. J Pediatr 1998; 133: 750–4.

    PubMed  CAS  Google Scholar 

  50. Munkholm P, Langholz E, Hollander D et al. Intestinal permeability in patients with Crohn’s disease and ulcerative colitis and their first degree relatives. Gut 1994; 35: 68–72.

    PubMed  CAS  Google Scholar 

  51. Madsen KL, Malfair D, Gray D, Doyle JS, Jewell LD, Fedorak RN. Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflam Bowel Dis 1999; 5: 262–70.

    Article  CAS  Google Scholar 

  52. Mashimo H, Wu DC, Podolsky DK, Fishman MC. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 1996; 274: 262–5.

    PubMed  CAS  Google Scholar 

  53. Brandtzaeg P, Farstad IN, Helgeland L. Phenotypes of T cells in the gut. Chem Immunol. 1998; 71: 1–26.

    PubMed  CAS  Google Scholar 

  54. Dogan A, Dunn-Walters DK, MacDonald TT. Demonstration of local clonality of mucosal T cells in human colon using DNA obtained by microdissection of immunohisto-chemically stained tissue sections. Eur J Immunol 1996; 26: 1240–5.

    PubMed  CAS  Google Scholar 

  55. Itohara S, Farr AG, Lafaille JJ et al. Homing of γδ thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 1990: 343: 754–7.

    PubMed  CAS  Google Scholar 

  56. Farstad IN, Norstein J, Brandtzeg P. Phenotypes of B and T cells in human intestinal and mesenteric lymph. Gastroenterology 1997; 112: 163–73.

    PubMed  CAS  Google Scholar 

  57. Lefrancois L, Fuller B, Huleatt JW, Olson S, Puddington L. On the front lines: intraepithelial lymphocytes as primary effectors of intestinal immunity. Springer Sem Immunopathol. 1997; 18: 463–76.

    CAS  Google Scholar 

  58. Molberg O, Nilsen EM, Sollid LM et al. CD4+ T cells with specific reactivity against astrovirus isolated from normal human small intestine. Gastroenterology 1998; 114: 115–22.

    PubMed  CAS  Google Scholar 

  59. James SP, Graeff AS, Zeitz M. Predominance of helper-inducer T cells in mesenteric lymph nodes and intestinal lamina propria of normal nonhuman primates. Cell Immunol 1987; 107: 372–83.

    PubMed  CAS  Google Scholar 

  60. Brandtzaeg P, Haraldsen G, Rugtveit J. Immunopathology of human inflammatory bowel disease. Springer Sem Immunopathol. 1997; 18: 555–89.

    CAS  Google Scholar 

  61. Hurst SD, Sitterding SM, Ji S, Barrett TA. Functional differentiation of T cells in the intestine of T cell receptor transgenic mice. Proc Natl Acad Sci USA 1997; 94: 3920–5.

    PubMed  CAS  Google Scholar 

  62. Moghaddami M, Cummins A, Mayrhofer G. Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 1998; 115: 1558.

    Google Scholar 

  63. Suzuki K, Oida T, Hamada H et al. Gut cryptopatches: direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis. Immunity 20; 13: 691–702.

    Google Scholar 

  64. Umesaki Y, Setoyama H, Matsumoto S, Okada Y. Expansion of αβ T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germfree mice and its independence from thymus. Immunology 1993; 79: 32–7.

    PubMed  CAS  Google Scholar 

  65. Helgeland L, Vaage JT, Rolstad B, Midtvedt T, Brandtzaeg P. Microbial colonization influences composition and T-cell receptor Vβ repertoire of intraepithelial lymphocytes in rat intestine. Immunology 1996; 89: 494–501.

    PubMed  CAS  Google Scholar 

  66. Bahram S, Bresnahan M, Geraghty DE, Spies T. A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci USA 1994; 91: 6259–63.

    PubMed  CAS  Google Scholar 

  67. Balk S, Ebert E, Blumenthal R et al. Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science 1991; 253: 1411 15.

    Google Scholar 

  68. Blumberg RS, Yockey CE, Gross GG, Ebert EC, Balk SP. Human intestinal intraepithelial lymphocytes are derived from a limited number of T cell clones that utilize multiple Vβ T cell receptor genes. J Immunol. 1993; 150: 5144–53.

    PubMed  CAS  Google Scholar 

  69. Gross GG, Schwartz VL, Stevens C, Ebert EC, Blumberg RS, Balk SP. Distribution of dominant T cell receptor β chains in human intestinal mucosa. J Exp Med. 1994; 180: 1337–44.

    PubMed  CAS  Google Scholar 

  70. Cepek KL, Parker CM, Madara JL, Brenner MB. Integrin αEβ7 mediates adhesion of T lymphocytes to epithelial cells. J Immunol 1993; 150: 3459–70.

    PubMed  CAS  Google Scholar 

  71. Papadakis KA, Prehn J, Nelson V et al. The role of thymus-expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system. J Immunol 20; 165: 5069–76.

    Google Scholar 

  72. Jabri B, de Serre NP, Cellier C et al. Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 20; 118: 867–79.

    Google Scholar 

  73. Christ AD, Colgan SP, Balk SP, Blumberg RS. Human intestinal epithelial cell lines produce factor(s) that inhibit CD3-mediated T-lymphocyte proliferation. Immunol Lett 1997; 58: 159–65.

    PubMed  CAS  Google Scholar 

  74. Cebra JJ, Jiang H-Q, Sterzl J, Tlaskalova-Hogenova H. The role of mucosal microbiota in the development and maintenance of the mucosal immune system. In: Ogra RL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd edn. San Diego: Academic Press, 1999: 267–80.

    Google Scholar 

  75. Berg RD, Savage DC. Immune responses of specific pathogen-free and gnotobiotic mice to antigens of indigenous and nonindigenous microorganisms. Infect Immun 1975; 11: 320–9.

    PubMed  CAS  Google Scholar 

  76. Nieuwenhuis ESS, Visser MR, Kavelaars A et al. Oral antibiotics as a novel therapy forarthritis; evidence of a beneficial effect of intestinal Escherichia coli Arthritis Rheum 20; 43: 2583–9.

    Google Scholar 

  77. Christ AD, Blumberg RS. The intestinal epithelial cell: immunological aspects. Springer Sem Immunopathol 1997; 18: 449–62.

    CAS  Google Scholar 

  78. Kelsall BL, Strober W. Dendritic cells of the gastrointestinal tract. Springer Sem Immunopathol 1997; 18: 409–20.

    CAS  Google Scholar 

  79. Frey A, Giannasca KT, Weltzin R et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 1996; 184,1045–59.

    PubMed  CAS  Google Scholar 

  80. Neutra MR. Current concepts in mucosal immunity. V. Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am J Physiol 1998; 274, G785–91.

    PubMed  CAS  Google Scholar 

  81. Dickinson BL, Badizadegan K, Wu Z et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 1999; 104: 903–11.

    PubMed  CAS  Google Scholar 

  82. Zhu X, Meng G, Dickinson BL et al. MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, macrophages and dendritic cells. J Immunol 2001; 166: 3266–76.

    PubMed  CAS  Google Scholar 

  83. Witmer-Pack MD et al. Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145 II. Expression in situ in lymphoid and nonlymphoid tissues. Cell Immunol 1995; 163: 157–62.

    PubMed  CAS  Google Scholar 

  84. Barone KS, Jain SL, Michael JG et al. Effect of in vivo depletion of CD4+ and CD8+ cells on the induction and maintenance of oral tolerance. Cell Immunol. 1995; 163: 19–29.

    PubMed  CAS  Google Scholar 

  85. Chen Y, Inobe J, Weiner HL. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediate active suppression. J Immunol 1995; 155: 910–16.

    PubMed  CAS  Google Scholar 

  86. Garside P, Steel M, Liew FY, Mowat AM. CD4+ but not CD8+ T cells are required for the induction of oral tolerance. Int Immunol 1995; 7: 501–4.

    PubMed  CAS  Google Scholar 

  87. Powrie F. T cells in inflammatory bowel disease: protective and pathogenic roles. Immunity 1995; 3: 171–4.

    PubMed  CAS  Google Scholar 

  88. Beagley KW, Fujihashi K, Lagoo AS et al. Differences in intraepithelial lymphocyte T cell subsets isolated from murine small versus large intestine. J Immunol 1995; 154: 5611–19.

    PubMed  CAS  Google Scholar 

  89. Camerini V, Panwala C, Kronenberg M. Regional specialization of the mucosal immune system. J Immunol 1993; 151: 1765–76.

    PubMed  CAS  Google Scholar 

  90. Bland PW, Whiting CV. Induction of MHC class II gene products in rat intestinal epithelium during graft-versus-host disease and effects on the immune function of the epithelium. Immunology 1992; 75: 366–71.

    PubMed  CAS  Google Scholar 

  91. Kaiserlian D, Vidal K, Revillard JP. Murine enterocytes can present soluble antigen to specific class II-restricted CD4+ T cells. Eur J Immunol. 1989; 19: 1513–16.

    PubMed  CAS  Google Scholar 

  92. Mayer L, Eisenhardt D, Salomon P et al. Expression of class II molecules on intestinal epithelial cells in humans. Differences between normal and inflammatory bowel disease. Gastroenterology 1991; 1: 3–12.

    Google Scholar 

  93. Hershberg RM, Framson PE, Cho DH et al. Intestinal epithelial cells utilize two distinct pathways for HLA class II antigen processing. J Clin Invest. 1997; 1: 204–15.

    Google Scholar 

  94. Wolf PR, Ploegh HL. How MHC class II molecules acquire peptide cargo: biosynthesis and trafficking through the endocytic pathway. Annu Rev Cell Dev Biol 1995; 11: 267–306.

    PubMed  CAS  Google Scholar 

  95. Chang C-H, Flavell RA. Class II transactivator regulates the expression of multiple genes involved in antigen presentation. J Exp Med 1995; 181: 765–7.

    PubMed  CAS  Google Scholar 

  96. Hershberg RM, Cho DH, Youakim A et al. Highly polarized HLA class II antigen processing and presentation by human intestinal epithelial cells. J Clin Invest 1998; 102: 792–803.

    PubMed  CAS  Google Scholar 

  97. Katz JF, Stebbins C, Appella E, Sant AJ. Invariant chain and DM edit self-peptide presentation by major histocompatibility complex (MHC) class II molecules. J. Exp. Med. 1996; 184: 1747–53.

    PubMed  CAS  Google Scholar 

  98. Pinet V, Vergelli M, Martin R et al. Antigen presentation mediated by recycling of surface HLA-DR molecules. Nature 1995; 375: 603–6.

    PubMed  CAS  Google Scholar 

  99. Zhong G, Romagnoli P, Germain RN. Related leucine-based cytoplasmic targeting signals in invariant chain and major histocompatibility complex class II molecules control endocytic presentation of distinct determinants in a single protein. J Exp Med 1997; 185: 429–38.

    PubMed  CAS  Google Scholar 

  100. Hirata I, Austin LL, Blackwell WH et al. Immunoelectron microscopic localization of HLA-DR antigen in control small intestine and colon and in inflammatory bowel disease. Dig Dis Sci 1986; 31: 1317–30.

    PubMed  CAS  Google Scholar 

  101. Mayrhofer G, Spargo LD. Distribution of class II major histocompatibility antigens in enterocytes of the rat jejunum and their association with organelles of the endocytic pathway. Immunology 1990; 70: 11–19.

    PubMed  CAS  Google Scholar 

  102. Gottlieb TA, Ivanov IE, Adesnik M, Sabatini DD. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J Cell Biol 1993; 120: 695–710.

    PubMed  CAS  Google Scholar 

  103. Jackman MR, Shurety W, Ellis JA, Luzio JP. Inhibition of apical but not basolateral endocytosis of ricin and folate in Caco-2 cells by cytochalasin D. J Cell Sci 1994; 107: 2547–56.

    PubMed  CAS  Google Scholar 

  104. Brandeis JM, Sayegh, Gallon L, Blumberg RS, Carpenter CB. Rat intestinal epithelial cells present major histocompatibility complex allopeptides to primed T cells. Gastroenterology 1994; 107: 1537–42.

    PubMed  CAS  Google Scholar 

  105. Telega GW, Baumgart DC, Carding SR. Uptake and presentation of antigen to T cells by primary colonic epithelial cells in normal and diseased states. Gastroenterology 20; 119: 1548–59.

    Google Scholar 

  106. Madara JL, Stafford J. Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest 1989; 83: 724–7.

    PubMed  CAS  Google Scholar 

  107. Cong J, Brandwein SL, McCabe RP et al. CD4+ T cells reactive to enteric bacterial antigens in sponataneous colitis C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease. J Exp Med 1998; 187: 855–64.

    PubMed  CAS  Google Scholar 

  108. Groux H, O’Garra A, Bigler M et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389: 737–42.

    PubMed  CAS  Google Scholar 

  109. Mayer L, Shlien R. Evidence for function of la molecules on gut epithelial cells in man. J. Exp. Med. 1987; 166: 1471–83.

    PubMed  CAS  Google Scholar 

  110. Hershberg R, Blumberg RS. What’s so (co)stimulating about the intestinal epithelium? Gastroenterology. 1999; 117: 726–36.

    PubMed  CAS  Google Scholar 

  111. Bleicher PA, Balk SP, Hagen SJ et al. Expression of murine CD1 on gastrointestinal epithelium. Science 1990; 250: 679–82.

    PubMed  CAS  Google Scholar 

  112. Hershberg R, Eghtesady P, Sydora B et al. Expression of the thymus leukemia antigen in mouse intestinal epithelium. Proc Natl Acad Sci USA 1990; 87: 9727–31.

    PubMed  CAS  Google Scholar 

  113. Blumberg RS. Current concepts in mucosal immunity. II. One size fits all: nonclassical MHC molecules fulfill multiple roles in epithelial cell function. Am J Physiol 1998; 274: G227–31.

    PubMed  CAS  Google Scholar 

  114. Balk SP, Burke S, Polischuk JE et al. Beta 2-microglobulin-independent MHC class Ib molecule expressed by human intestinal epithelium. Science 1994; 265: 259–62.

    PubMed  CAS  Google Scholar 

  115. Groh V, Bahram S, Bauer S et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 1996; 93: 12445–50.

    PubMed  CAS  Google Scholar 

  116. Braua VM, Allan DS, McMicha AJ. Functions or nonclassical MHC and non-MHC-encoded class I molecules. Curr Opin Immunol 1999; 11: 100–8.

    Google Scholar 

  117. Parkkila S, Waheed A, Britton RS et al. Immunohistochemistry of HLA-H, the protein defective in patients with hereditary hemochromatosis, reveals unique pattern of expression in gastrointestinal tract. Proc Natl Acad Sci USA 1997; 94: 2534–9.

    PubMed  CAS  Google Scholar 

  118. Beckman E, Porcelli S, Morita C, Behar S, Furlong S, Brenner M. Recognition of a lipid antigen by CD1-restricted αβP+ T cells. Nature 1994; 372: 691–4.

    PubMed  CAS  Google Scholar 

  119. Sieling PA, Chatterjee D, Porcelli SA et al. CD1-restricted T cell recognition of microbial ligoplycan antigens. Science 1995; 269: 227–30.

    PubMed  CAS  Google Scholar 

  120. Blumberg R, Terhorst C, Bleicher P et al. Expression of a nonpolymorphic MHC class I-like molecule, CD1d by human intestinal epithelial cells. J Immunol 1991; 147: 2518–24.

    PubMed  CAS  Google Scholar 

  121. Canchis P, Bhan A, Landau S, Yang L, Balk S, Blumberg R. Tissue distribution of the non-polymorphic major histocompatibility complex class I-like molecule, CD1d. Immunology 1993; 80: 561–5.

    PubMed  CAS  Google Scholar 

  122. Exley M, Garcia J, Wilson SB et al. Developmental and activation regulated expression of CD1d in human lymphoid and myeloid lineages. Immunology 20; 1: 37–47.

    Google Scholar 

  123. Joyce S, Woods AS, Yewdell JW et al. Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 1998; 279: 1541–4.

    PubMed  CAS  Google Scholar 

  124. Kawano T, Cui J, Koezuka Y et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosyleeramides. Science 1997; 278: 1626–9.

    PubMed  CAS  Google Scholar 

  125. Castano A, Tangri S, Miller S et al. Peptide binding and presentation by mouse CD1. Science 1995; 269: 223–6.

    PubMed  CAS  Google Scholar 

  126. Zeng A-H, Castano AR, Segelke BW, Stura EA, Peterson PA, Wilson IA. Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 1997; 277: 339–45.

    PubMed  CAS  Google Scholar 

  127. Bendelac A, Lantz O, Quimby M, Yewdell J, Bennink J, Brutkiewicz R. CDId recognition by mouse NK1+ T lymphocytes. Science. 1995; 268: 863–5.

    PubMed  CAS  Google Scholar 

  128. Bendelec A, Rivera MN, Park S-H, Roark JH. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 1997; 15: 535–62.

    Google Scholar 

  129. Balk S, Bleicher P, Terhorst C. Isolation and expression of cDNA encoding the murine homologues of CD1. J Immunol. 1991; 146: 768–74.

    PubMed  CAS  Google Scholar 

  130. Calabi R, Bradbury A. A review. The CD1 system. Tissue Antigens. 1991; 37: 1–9.

    PubMed  CAS  Google Scholar 

  131. MacDonald HR. NK1.1+ T cell receptor-α/β+ cells: new clues to their origin, specificity, and function. J Exp Med 1995; 182:; 633–8.

    PubMed  CAS  Google Scholar 

  132. Chen H, Paul WE. Cultured NK1.1+CD4+ T cells produce large amounts of IL-4 and IFN-γ upon activation by anti-CD3 or CD1. J Immunol 1997; 159: 2240–9.

    PubMed  CAS  Google Scholar 

  133. Lantz O, Bendelac A. An invariant T cell receptor α chain is used by a unique subset of MHC class I-specific CD4+ and CD4CD8 T cells in mice and humans. J Exp Med 1994; 180: 1097–106.

    PubMed  CAS  Google Scholar 

  134. Toyabe S, Seki S, Liai T et al. Requirement of IL-4 and liver NK1+ T cells for concanavalin A-induced hepatic injury in mice. J Immunol 1997; 159: 1537–42.

    PubMed  CAS  Google Scholar 

  135. Matsuda JL, Naidenko OV, Gapin L et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 2000; 192: 741–54.

    PubMed  CAS  Google Scholar 

  136. Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul WE. Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science 1995; 270: 1845–7.

    PubMed  CAS  Google Scholar 

  137. Smiley ST, Kaplan MH, Grusby MJ. Immunoglobulin E production in the absence of interleukin-4-secreting CD1d-dependent cells. Science 1997; 275: 977–9.

    PubMed  CAS  Google Scholar 

  138. Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, Van Kaer L. CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 1997; 6: 469–77.

    PubMed  CAS  Google Scholar 

  139. Chen YH, Chiu MM, Mandel M, Wang CR. Impaired NK-T cells development and early IL-4 production in CD1-deficient mice. Immunity 1997; 459–67.

    Google Scholar 

  140. Kawamura T, Takeda K, Mendiratta SK et al. Cutting edge: critical role of NK1+ T cells in IL-12-induced immune responses in vivo. J Immunol 1998; 160: 16.

    PubMed  CAS  Google Scholar 

  141. Seki S, Hashimoto W, Ogasawara K et al. Antimetastatic effect of NK1 T cells on experimental haematogenous tumour metastases in the liver and lungs of mice. Immunology 1997; 92: 561.

    PubMed  CAS  Google Scholar 

  142. Exley M, Garcia J, Balk SP, Porcelli S. Requirements for CD1d recognition by human invariant Vα24+ CD4 CD8 T cells. J ExpMed 1997; 186: 1.

    Article  Google Scholar 

  143. Prussin C, Foster B. TCR Vα24 and Vβ11 coexpression defines a human NK1 T cell analog containing a unique Th() subpopulation. J Immunol 1997; 159: 5862–70.

    PubMed  CAS  Google Scholar 

  144. Porcelli S, Gerdes D, Fertig A, Balk SP. Human T cells expressing an invariant Vα24-JαQ TCRα are CD4 and heterogeneous with respect to TCRβ expression. Human Immunol 1996; 48: 63.

    CAS  Google Scholar 

  145. Exley M, Porcelli S, Furman M, Garcia J, Balk S. CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant Vα24JαQ T cell receptor α chains. J Exp Med 1998; 188: 867.

    PubMed  CAS  Google Scholar 

  146. Brossay L, Chioda M, Burdin N et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J ExpMed 1998; 188: 1521–8.

    CAS  Google Scholar 

  147. Nieda M, Nicol A, Koezuka Y et al. Activation of human VαNKT cells by α-glycosylceramide in a CD1d-restricted and Vα24 TCR-mediatcd manner. Human Immunol 1999; 60: 10–19.

    CAS  Google Scholar 

  148. Spada FM, Koezuka Y, Porcelli SA. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 1998; 188: 1529–34.

    PubMed  CAS  Google Scholar 

  149. Wilson SB, Kent SC, Patton KT et al. Extreme Thl bias of invariant Vα2JαQ T cells in type 1 diabetes. Nature 1998; 391: 177.

    PubMed  CAS  Google Scholar 

  150. Mieza MA, Itoh T, Cui JQ et al. Selective reduction of Vα14+ NK T cells associated with disease development in aujtoimmune-prone mice. J Immunol 1996; 156: 4035.

    PubMed  CAS  Google Scholar 

  151. Sumida T, Sakamoto A, Murata H et al. Selective reduction of T cells bearing invariant Vα24JαQ antigen receptor in patients with systemic sclerosis. J Exp Med 1995: 182: 1163.

    PubMed  CAS  Google Scholar 

  152. Cui J, Shin T, Kawano T et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 1997; 278: 1623–9.

    PubMed  CAS  Google Scholar 

  153. Somnay-Wadgaonkar K, Nusrat A, Kim HS et al. Immunolocalization of CD1d in human intestinal epithelial cells and identification of a (β2-microglobulin associated form. Int Immunol 1999; 383–92.

    Google Scholar 

  154. Blumberg RS, Terhorst C, Bleicher P et al. Expression of human CD1d on gastrointestinal epithelium. J Immunol 1991; 147: 2518–24.

    PubMed  CAS  Google Scholar 

  155. van de Wal Y, Pitman RS, Hershberg RM et al. Human and mouse intestinal epithelial cells (IEC) present glycolipid antigens to natural killer (NK)-T cells in a CD1d-restricted manner. Gastroenterology 2001 (in press).

    Google Scholar 

  156. Saubermann LJ, Beck P, de Jong YP et al. Natural killer-T cells activated by α-galactosylceramide in the presence of CD1d provide protection against colitis in mice. Gastroenterology 20; 119: 119–28.

    Google Scholar 

  157. Bleday R, Braidt J, Ruoff K, Shellito PC, Ackroyd FW. Quantitative cultures of the mucosal-associated bacteria in the mechanically prepared colon and rectum. Dis Colon Rectum 1993; 36: 844–9.

    PubMed  CAS  Google Scholar 

  158. Roediger WE. Anaerobic bacteria, the colon and colitis. Aust NZ J Surg 1980; 50: 73–5.

    CAS  Google Scholar 

  159. Madara JL. Epithelia: biologic principles of organization. In: Yamada T, ed. Textbook of Gastroenterology. Philadelphia: Lippincott, 1995: 141.

    Google Scholar 

  160. Perez-Vilar J, Hill RL. The structure and assembly of secreted mucins. J Biol Chem 1999; 274: 31751–4.

    PubMed  CAS  Google Scholar 

  161. Sanderson IR, Walker A. Mucosal barrier: an overview. In: Ogra RL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd edn. San Diego: Academic Press, 1999: 5.

    Google Scholar 

  162. Jabbal I, Kells DI, Forstner G, Forstner J. Human intestinal goblet cell mucin. Can J Biochem 1976; 54: 707–16.

    Article  PubMed  CAS  Google Scholar 

  163. Gum JR Jr. Mucin genes and the proteins they encode: structure, diversity, and regulation. Am J Respir Cell Mol Biol 1992; 7: 557–64.

    PubMed  CAS  Google Scholar 

  164. Loomes KM, Senior HE, West PM, Roberton AM. Functional protective role for mucin glycosylated repetitive domains. Eur J Biochem 1999; 266: 105–11.

    PubMed  CAS  Google Scholar 

  165. Kindon H, Pothoulakis C, Thim L, Lynch-Devaney K, Podolsky DK. Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology 1995; 109: 516–23.

    PubMed  CAS  Google Scholar 

  166. Lindahl M, Carlstedt I. Binding of pig small intestinal mucin glycopeptides to fimbriated enterotoxigenic Escherichia coli. Symp Soc Exp Biol 1989; 43: 423–8.

    PubMed  CAS  Google Scholar 

  167. Piotrowski J, Slomiany A, Murty VL, Feketc Z, Slomiany BL. Inhibition of Helicobacter pylori colonization by sulfated gastric mucin. Biochem Int 1991; 24: 749–56.

    PubMed  CAS  Google Scholar 

  168. Smith C J, Kapcr JB, Mack DR. Intestinal mucin inhibits adhesion of human enteropathogenic Escherichia coli to HEp-2 cells. J Pediatr Gastroenterol Nutr 1995; 21: 269–76.

    Article  PubMed  CAS  Google Scholar 

  169. Epple HJ, Krcuscl KM, Hanski C, Schulzke JD, Riecken EO, Fromm M. Differential stimulation of intestinal mucin secretion by cholera toxin and carbachol. Pflugers Arch 1997; 433: 638–47.

    PubMed  CAS  Google Scholar 

  170. Choi J, Klinkspoor JH, Yoshida T, Lee SP. Lipopolysaccharide from Escherichia coli stimulates mucin secretion by cultured dog gallbladder epithelial cells. Hepatology 1999; 29: 1352–7.

    PubMed  CAS  Google Scholar 

  171. McCool DJ, Marcon MA, Forstner JF, Forstner GG. The T84 human colonic adenocarcinoma cell line produces mucin in culture and releases it in response to various secretagogues. Biochem J 1990; 267: 491–500.

    PubMed  CAS  Google Scholar 

  172. Ouellette, AJ, Greco RM, James M, Frederick D, Naftilan J, Fallon JT. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J Cell Biol 1989; 108: 1687–95.

    PubMed  CAS  Google Scholar 

  173. Eisenhauer PB, Harwig SS, Lehrer RI. Cryptdins: antimicrobial defensins of the murine small intestine. Infect Immun 1992; 60: 3556–65.

    PubMed  CAS  Google Scholar 

  174. O’Neil DA, Porter EM, Elewaut D et al. Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 1999; 163: 6718–24.

    PubMed  CAS  Google Scholar 

  175. Pruitt KM, Rahemtulla B, Rahemtula F, Russel MW. Innate humoral factors. In: Ogra RL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd edn. San Diego: Academic Press, 1999: 65.

    Google Scholar 

  176. Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 1992; 73: 472–9.

    PubMed  CAS  Google Scholar 

  177. Harmsen MC, Swart PJ, de Bethune MP et al. Antiviral effects of plasma and milk proteins: lactoferrin shows potent activity against both human immunodeficiency virus and human cytomegalovirus replication in vitro. J Infect Dis 1995; 172: 380–8.

    PubMed  CAS  Google Scholar 

  178. Fujihara T, Hayashi K. Lactoferrin inhibits herpes simplex virus type-1 (HSV-1) infection to mouse cornea. Arch Virol 1995; 140: 1469–72.

    PubMed  CAS  Google Scholar 

  179. Kawasaki Y, Tazume S, Shimizu K et al. Inhibitory effects of bovine lactoferrin on the adherence of enterotoxigenic Escherichia coli to host cells (In process citation). Biosci Biotechnol Biochem 2000; 64: 348–54.

    PubMed  CAS  Google Scholar 

  180. Turchany JM, Aley SB, Gillin FD. Giardicidal activity of lactoferrin and N-terminal peptides. Infect Immun 1995; 63: 4550–2.

    PubMed  CAS  Google Scholar 

  181. Tanaka T, Omata Y, Saito A, Shimazaki K, Igarashi I, Suzuki N. Growth inhibitory effects of bovine lactoferrin to Toxoplasma gondii parasites in murine somatic cells. J Vet Med Sci 1996; 58: 61–5.

    PubMed  CAS  Google Scholar 

  182. Wang YB, Germaine GR. Effect of lysozyme on glucose fermentation, cytoplasmic pH, and intracellular potassium concentrations in Streptococcus mutans 10449. Infect Immun 1991; 59: 638–4.

    PubMed  CAS  Google Scholar 

  183. Soukka T, Lumikari M, Tenovuo J. Combined inhibitory effect of lactoferrin and lactoperoxidase system on the viability of Streptococcus mutans, serotype c. Scand J Dent Res 1991; 99: 390–6.

    PubMed  CAS  Google Scholar 

  184. Andoh A, Fujiyama Y, Bamba T, Hosoda S. Differential cytokine regulation of complement C3, C4, and factor B synthesis in human intestinal epithelial cell line, Caco-2. J Immunol 1993; 151: 4239–47.

    PubMed  CAS  Google Scholar 

  185. MacDermott RP, Sanderson IR, Reinecker HC. The central role of chemokines (chemotactic cytokines) in the immunopathogenesis of ulcerative colitis and Crohn’s disease. Inflam Bowel Dis 1998; 4: 54–67.

    Article  CAS  Google Scholar 

  186. MacDermott RP. Chemokines in the inflammatory bowel diseases. J Clin Immunol 1999; 19: 266–72.

    PubMed  CAS  Google Scholar 

  187. Eckmann L, Jung HC, Schurer-Maly C, Panja A, Morzycka-Wroblewska E, Kagnoff MF. Differential cytokine expression by human intestinal epithelial cell lines: regulated expression of interleukin 8. Gastroenterology 1993; 105: 1689–97.

    PubMed  CAS  Google Scholar 

  188. Eckmann L, Kagnoff MF, Fierer J. Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect Immun 1993; 61: 4569–74.

    PubMed  CAS  Google Scholar 

  189. McCormick BA, Hofman PM, Kim J, Carnes DK, Miller SI, Madara JL. Surface attachment of Salmonella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils. J Cell Biol 1995; 131: 1599–608.

    PubMed  CAS  Google Scholar 

  190. Schulte R, Autenrieth IB. Yersinia enterocolitica-induced interleukin-8 secretion by human intestinal epithelial cells depends on cell differentiation. Infect Immun 1998; 66: 1216–24.

    PubMed  CAS  Google Scholar 

  191. Jung HC, Eckmann L, Yang SK et al. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 1995; 95: 55–65.

    PubMed  CAS  Google Scholar 

  192. Crowe SE, Alvarez L, Dytoc M et al. Expression of interleukin 8 and CD 54 by human gastric epithelium after Helicobacter pylori infection in vitro. Gastroenterology 1995; 108: 65–74.

    PubMed  CAS  Google Scholar 

  193. Jung HC, Kim JM, Song IS, Kim CY. Helicobacter pylori induces an array of pro-inflammatory cytokines in human gastric epithelial cells: quantification of mRNA for interleukin-8,-1 alpha/beta, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1 nd tumour necrosis factor-alpha. J Gastroenterol Hepatol 997; 12: 473–80.

    Google Scholar 

  194. Husband AJ, Beagley KW, McGhee JR. Mucosal Cytokines. In: Ogra RL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, eds. Mucosal Immunology, 2nd edn. San Diego: Academic Press, 1999: 541.

    Google Scholar 

  195. Schuerer-Maly CC, Eckmann L, Kagnoff MF, Falco MT, Maly FE. Colonic epithelial cell lines as a source of interleukin-8: stimulation by inflammatory cytokines and bacterial lipopolysaccharide. Immunology 1994; 81: 85–91.

    PubMed  CAS  Google Scholar 

  196. Reinecker HC, MacDermott RP, Mirau S, Dignass A, Podolsky DK. Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology 1996; 111: 1706–13.

    PubMed  CAS  Google Scholar 

  197. Ciacci C, Mahida YR, Dignass A, Koizumi M, Podolsky DK. Functional interleukin-2 receptors on intestinal epithelial cells. J Clin Invest 1993; 92: 527–32.

    PubMed  CAS  Google Scholar 

  198. Ciacci C, Lind SE, Podolsky DK. Transforming growth factor beta regulation of migration in wounded rat intestinal epithelial monolayers. Gastroenterology 1993; 105: 93–101.

    PubMed  CAS  Google Scholar 

  199. Kim PH, Kagnoff MF. Transforming growth factor beta 1 increases IgA isotype switching at the clonal level. J Immunol 1990; 145: 3773–8.

    PubMed  CAS  Google Scholar 

  200. Bromander AK, Kjerrulf M, Holmgren J, Lycke N. Cholera toxin enhances alloantigen presentation by cultured intestinal epithelial cells. Scand J Immunol 1993; 37: 452–8.

    PubMed  CAS  Google Scholar 

  201. Goodrich ME, McGee DW. Effect of intestinal epithelial cell cytokines on mucosal B-cell IgA secretion: enhancing effect of epithelial-derived IL-6 but not TGF-β pm IgA+ B cells. Immunol Lett 1999; 67: 11–14.

    PubMed  CAS  Google Scholar 

  202. Defrance T, Vanbervliet B, Briere F, Durand I, Rousset F, Banchereau J. Interleukin 10 and transforming growth factor beta cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A. J Exp Med 1992; 175: 671–82.

    PubMed  CAS  Google Scholar 

  203. Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin-10. Annu Rev Immunol 1993; 11: 165–90.

    PubMed  CAS  Google Scholar 

  204. Madsen KL, Lewis SA, Tavernini MM, Hibbard J, Fedorak RN. Interleukin 10 prevents cytokine-induced disruption of T84 monolayer barrier integrity and limits chloride secretion. Gastroenterology 1997; 113: 151–9.

    PubMed  CAS  Google Scholar 

  205. Fujihashi K, McGhee JR, Yamamoto M, Peschon JJ, Kiyono H. An interleukin-7 internet for intestinal intraepithelial T cell development: knockout of ligand or receptor reveal differences in the immunodeficient state. Eur J Immunol 1997; 27: 2133–8.

    PubMed  CAS  Google Scholar 

  206. He YW, Malek TR. Interleukin-7 receptor alpha is essential for the development of gamma delta + T cells, but not natural killer cells. J Exp Med 1996; 184: 289–93.

    PubMed  CAS  Google Scholar 

  207. Maki K, Sunaga S, Komagata Y et al. Interleukin 7 receptor-deficient mice lack gammadelta T cells. Proc Natl Acad Sci USA 1996; 93: 7172–7.

    PubMed  CAS  Google Scholar 

  208. Carini C, Essex M. Interleukin 2-independent interleukin 7 activity enhances cytotoxic immune response of HIV-1-infected individuals. AIDS Res Hum Retro viruses 1994; 10: 121–30.

    Article  CAS  Google Scholar 

  209. Kasper LH, Matsuura T, Khan IA. IL-7 stimulates protective immunity in mice against the intracellular pathogen, Toxoplasma gondii. J Immunol 1995; 155: 4798–804.

    PubMed  CAS  Google Scholar 

  210. Watanabe M, Ueno Y, Yajima T et al. Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest 1995; 95: 2945–53.

    Article  PubMed  CAS  Google Scholar 

  211. Puddington L, Olson S, Lefrancois L. Interactions between stem cell factor and c-Kit are required for intestinal immune system homeostasis. Immunity 1994; 1: 733–9.

    PubMed  CAS  Google Scholar 

  212. Klimpe, GR, Langley KE, Wypych J, Abrams JS, Chopra AK, Niesel DW. A role for stem cell factor (SCF): c-kit interaction(s) in the intestinal tract response to Salmonella typhimurium infection. J Exp Med 1996; 184: 271–6.

    Google Scholar 

  213. Wang J, Whetsell M, Klein JR. Local hormone networks and intestinal T cell homeostasis. Science 1997; 275: 1937–9.

    PubMed  CAS  Google Scholar 

  214. Hata Y, Ota S, Nagata T, Uehara Y, Terano A, Sugimoto T. Primary colonic epithelial cell culture of the rabbit producing prostaglandins. Prostaglandins 1993; 45: 129–41.

    PubMed  CAS  Google Scholar 

  215. Barrera S, Lai J, Fiocchi C, Roche JK. Regulation by prostaglandin E2 of interleukin release by T lymphocytes in mucosa. J Cell Physiol 1996; 166: 130–7.

    PubMed  CAS  Google Scholar 

  216. Reinecker HC, Podolsky DK. Human intestinal epithelial cells express functional cytokine receptors sharing the common gamma c chain of the interleukin 2 receptor. Proc Natl Acad Sci USA 1995; 92: 8353–7.

    PubMed  CAS  Google Scholar 

  217. Sutherland DB, Varilek GW, Neil GA. Identification and characterization of the rat intestinal epithelial cell (IEC-18) interleukin-1 receptor. Am J Physiol 1994; 266: C1198–203.

    PubMed  CAS  Google Scholar 

  218. McGee DW, Vitkus SJ, Lee P. The effect of cytokine stimulation on IL-1 receptor mRNA expression by intestinal epithelial cells. Cell Immunol 1996; 168: 276–80.

    PubMed  CAS  Google Scholar 

  219. Sollid LM, Kvale D, Brandtzaeg P, Markussen G, Thorsby E. Interferon-gamma enhances expression of secretory component, the epithelial receptor for polymeric immunoglobulins. J Immunol 1987; 138: 4303–6.

    PubMed  CAS  Google Scholar 

  220. Kvale D, Lovhaug D, Sollid LM, Brandtzaeg P. Tumor necrosis factor-alpha up-regulates expression of secretory component, the epithelial receptor for polymeric Ig. J Immunol 1998; 140: 3086–9.

    Google Scholar 

  221. Phillips JO, Everson MP, Moldoveanu Z, Lue C, Mestecky J. Synergistic effect of IL-4 and IFN-gamma on the expression of polymeric Ig receptor (secretory component) and IgA binding by human epithelial cells. J Immunol 1990; 145: 1740–4.

    PubMed  CAS  Google Scholar 

  222. Cerf-Bensussan N, Quaroni A, Kurnick JT, Bhan AK. Intracpilhclial lymphocytes modulate la expression by intestinal epithelial cells. J Immunol 1984; 132: 2244–52.

    PubMed  CAS  Google Scholar 

  223. Hoang P, Crotty B, Dalton HR, Jewell DP. Epithelial cells bearing class II molecules stimulate allogeneic human colonic intraepithelial lymphocytes. Gut 1992; 33: 1089–93.

    PubMed  CAS  Google Scholar 

  224. Lowes JR, Radwan P, Priddle JD, Jewell DP. Characterisation and quantification of mucosal cytokine that induces epithelial histocompatibility locus antigen-DR expression in inflammatory bowel disease. Gut 1993; 33: 315–9.

    Google Scholar 

  225. Kvale D, Krajci P, Brandtzaeg P. Expression and regulation of adhesion molecules ICAM-1 (CD54) and LFA-3 (CD58) in human intestinal epithelial cell lines. Scand J Immunol 1992; 35: 669–76.

    PubMed  CAS  Google Scholar 

  226. Ye G, Barrera C, Fan X, Gourley WK, Crowe SE, Ernst PB, Reyes VE. Expression of B7-1 and B7-2 costimulatory molecules by human gastric epithelial cells: potential role in CD4+ T cell activation during Helicobacter pylori infection. J Clin Invest 1997; 99: 1628–36.

    PubMed  CAS  Google Scholar 

  227. Medzhitov R, Janeway C Jr. The toll receptor family and microbial recognition. Trends Microbiol 20; 8: 452–6.

    Google Scholar 

  228. Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med 20; 343: 338–44.

    Google Scholar 

  229. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature 20; 406: 782–7.

    Google Scholar 

  230. Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol 20; 12: 13–19.

    Google Scholar 

  231. Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice; mutations in Tlr4 gene. Science 1998; 282: 2085–8.

    PubMed  CAS  Google Scholar 

  232. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 20; 164: 966–72.

    Google Scholar 

  233. Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 20; 12: 20–6.

    Google Scholar 

  234. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 20; 68: 7010–17.

    Google Scholar 

  235. Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature 20; 408: 740–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hershberg, R., Blumberg, R.S. (2003). The lymphocyte-epithelial-bacterial interface. In: Targan, S.R., Shanahan, F., Karp, L.C. (eds) Inflammatory Bowel Disease: From Bench to Bedside. Springer, Boston, MA. https://doi.org/10.1007/0-387-25808-6_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-25808-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25807-2

  • Online ISBN: 978-0-387-25808-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics