Skip to main content

Genetics of inflammatory bowel disease

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Probert CS, Jayanthi V, Hughes AO, Thompson JR, Wicks AC, Mayberry JF. Prevalence and family risk of ulcerative colitis and Crohn’s disease: an epidemiological study among Europeans and south Asians in Leicestershire. Gut 1993; 34: 1547–51.

    PubMed  CAS  Google Scholar 

  2. Sonnenberg A, Wasserman IH. Epidemiology of inflammatory bowel disease among U.S. military veterans. Gastroenterology 1991; 101: 122–30.

    PubMed  CAS  Google Scholar 

  3. Kurata JH, Kantor-Fish S, Frankl H, Godby P, Vadheim CM. Crohn’s disease among ethnic groups in a large health maintenance organization. Gastroenterology 1992; 102: 1940–8.

    PubMed  CAS  Google Scholar 

  4. Shivananda S, Lennard-Jones J, Logan R et al. Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European Collaborative Study on Inflammatory Bowel Disease (EC-IBD). Gut 1996; 39: 690–7.

    PubMed  CAS  Google Scholar 

  5. Sonnenberg A, McCarty DJ, Jacobsen SJ. Geographic variation of inflammatory bowel disease within the United States. Gastroenterology 1991; 100: 143–9.

    PubMed  CAS  Google Scholar 

  6. Trallori G, Palli D, Saieva C et al. A population-based study of inflammatory bowel disease in Florence over 15 years (1978–92). Scand J Gastroenterol 1996; 31: 892–9.

    PubMed  CAS  Google Scholar 

  7. Loftus EV Jr, Silverstein MD, Sandborn WJ, Tremaine WJ, Harmsen WS, Zinsmeister AR. Crohn’s disease in Olmsted County, Minnesota, 1940–1993: incidence, prevalence, and survival. Gastroenterology 1998; 114: 1161–8.

    PubMed  Google Scholar 

  8. Bernstein CN, Blanchard JF, Rawsthorne P, Wajda A. Epidemiology of Crohn’s disease and ulcerative colitis in a central Canadian province: a population-based study. Am J Epidemiol 1999; 149: 916–24.

    PubMed  CAS  Google Scholar 

  9. Loftus EV Jr, Silverstein MD, Sandborn WJ, Tremaine WJ, Harmsen WS, Zinsmeister AR. Ulcerative colitis in Olmsted County, Minnesota, 1940–1993: incidence, prevalence, and survival. Gut 2000; 46: 336–43.

    PubMed  Google Scholar 

  10. Palli D, Masala G, Trallori G, Bardazzi G, Saieva C. A capture-recapture estimate of inflammatory bowel disease prevalence: the Florence population-based study. Ital J Gastroenterol Hepatol 1998; 30: 50–3.

    PubMed  CAS  Google Scholar 

  11. Russel MG, Dorant E, Volovics A et al. High incidence of inflammatory bowel disease in The Netherlands: results of a prospective study. The South Limburg IBD Study Group. Dis Colon Rectum 1998; 41: 33–40.

    PubMed  CAS  Google Scholar 

  12. Russel MG, Stockbrugger RW. Epidemiology of inflammatory bowel disease: an update. Scand J Gastroenterol 1996; 31: 417–27.

    PubMed  CAS  Google Scholar 

  13. Yang H, Rotter JI. The genetics of inflammatory bowel disease. In: Targan SR, Shanahan F, eds. Inflammatory Bowel Disease: From Bench to Bedside. Baltimore: Williams & Wilkins, 1994: 32–64.

    Google Scholar 

  14. Rotter JI, Yang H, Shohat T. Genetic complexities of inflammatory bowel disease and its distribution among the Jewish people. In: Bonne-Tamir B, Adam A, eds. Genetic Diversity Among Jews: Diseases and Markers at the DNA Level. New York: Oxford University Press, 1992: 395–411.

    Google Scholar 

  15. Gilat T, Grossman A, Fireman Z, Rozen P. Inflammatory bowel disease in Jews. In: McConnell R, Rozen P, Langman M, Gilat T, eds. The Genetics and Epidemiology of Inflammatory Bowel Disease. New York: Krager, 1986: 135–40.

    Google Scholar 

  16. Roth M-P, Petersen GM, McElree C, Feldman E, Rotter JI. Geographic origins of Jewish patientis with inflammatory bowel disease. Gastroenterology 1989; 97: 900–4.

    PubMed  CAS  Google Scholar 

  17. Zlotogora J, Zimmerman J, Rachmilewitz D. Crohn’s disease in Ashkenazi Jews. Gastroenterology 1990; 99: 286–90.

    PubMed  CAS  Google Scholar 

  18. Monk M, Mendeloff AI, Siegel CI, Lilienfeld A. An epidemiological study of ulcerative colitis and regional enteritis among adults in Baltimore. I. Hospital incidence and prevalence, 1960–1963. Gastroenterology 1967; 53: 198–210.

    Google Scholar 

  19. Korelitz BI. From Crohn to Crohn’s disease — 1979: an epidemiologic study in New York city. Mt Sinai J Med 1979; 46: 533–40.

    Google Scholar 

  20. Brahme F, Lindstrom G, Wenckert A. Crohn’s disease in a defined population. Gastroenterology 1975; 69: 342–51.

    PubMed  CAS  Google Scholar 

  21. Hellers G. Crohn’s disease in Stockholm county, 1955–1974: a study of epidemiology, results of surgical treatment and long term prognosis. Acta Chir Scand 1979; Suppl 490: 1–84.

    Google Scholar 

  22. Novis BH, Marks IN, Louw JH, Bank S. Incidence of Crohn’s disease at Groote Schuur Hospital during 1970–1974. S Afr Med J 1975; 49: 693–7.

    PubMed  CAS  Google Scholar 

  23. Pinchbeck BR, Kirdeikis J, Thomson ABR. Effect of religious affiliation and education status on the prevalence of inflammatory bowel disease in northern Alberta. Can J Gastroenterol 1988; 2(Suppl. A): 95–100.

    Google Scholar 

  24. Odes HS, Fraser D, Krugliak P, Fenyves D, Fraser GM, Sperber AD. Inflammatory bowel disease in the Bedouin Arabs of southern Israel: rarity of diagnosis and clinical features. Gut 1991; 32: 1024–6.

    PubMed  CAS  Google Scholar 

  25. Krawiec J, Odes HSL, Krugliak P, Weitzman S. Aspects of the epidemiology of Crohn’s disease in the Jewish population in Beer Sheva, Israel. Israel J Med Sci 1984; 20: 16–21.

    PubMed  CAS  Google Scholar 

  26. Yang H, Rotter JI. Genetic aspects of idiopathic inflammatory bowel disease. In: Kirsner JB, Shorter RG, eds. Inflammatory Bowel Disease, 4th edn. Baltimore: Williams & Wilkins, 1995: 301–31.

    Google Scholar 

  27. Russel MGVM, Pastoor CJ, Janssen KMW et al. Familial aggregation of inflammatory bowel disease: a population-based study in South Limburg, the Netherlands. Scand J Gastroenterol 1997; 32: 88–91.

    Google Scholar 

  28. Mayberry JF, Rhodes J, Newcombe RG. Familial prevalence of inflammatory bowel disease in relatives of patients with Crohn’s disease. Br Med J 1980; 280: 84.

    PubMed  CAS  Google Scholar 

  29. Fielding JF. The relative risk of inflammatory bowel disease among parents and siblings of Crohn’s disease patients. J Clin Gastroenterol 1986; 8: 655–7.

    PubMed  CAS  Google Scholar 

  30. Orholm M, Munkholm P, Langholz E, Nielsen OH, Sorensen IA, Binder V. Familial occurrence of inflammatory bowel disease. N Engl J Med 1991; 324: 84–8.

    Article  PubMed  CAS  Google Scholar 

  31. Binder V. Genetic epidemiology in inflammatory bowel disease. Dig Dis 1998; 16: 351–5.

    PubMed  CAS  Google Scholar 

  32. Orholm M, Fonager K, Sorensen HT. Risk of ulcerative colitis and Crohn’s disease among offspring of patients with chronic inflammatory bowel disease. Am J Gastroenterol 1999; 94: 3236–8.

    PubMed  CAS  Google Scholar 

  33. Yang H, McElree C, Roth M-P, Shanahan F, Targan SR, Rotter JI. Familial empiric risks for inflammatory bowel disease: differences between Jews and non-Jews. Gut 1993; 34: 517–24.

    PubMed  CAS  Google Scholar 

  34. Kirsner JB, Spencer JA. Family occurrences of ulcerative colitis, regional enteritis and ileocolitis. Ann Intern Med 1963; 59: 539–46.

    Google Scholar 

  35. McConnell RB, Vadheim CM. Inflammatory bowel disease. In: King RA, Rotter JI, Motulsky AG, eds. The Genetic Basis of Common Diseases. New York: Oxford University Press, 1992: 326–48.

    Google Scholar 

  36. Roth MP, Petersen GM, McElree C, Vadheim CM, Panish JF, Rotter JI. Familial empiric risk estimates of inflammatory bowel disease in Ashkenazi Jews. Gastroenterology 1989; 96: 1016–20.

    PubMed  CAS  Google Scholar 

  37. Kirsner JB. Genetic aspects of inflammatory bowel disease. Clin Gastroenterol 1973; 2: 557–76.

    Google Scholar 

  38. Weterman IT, Pena AS. Familial incidence of Crohn’s disease in the Netherlands and a review of the literature. Gastroenterology 1984; 86: 449–52.

    PubMed  CAS  Google Scholar 

  39. McConnell RB. Ulcerative colitis — genetic features. Scand J Gastroenterol Supplement 1983; 88: 14–16.

    CAS  Google Scholar 

  40. Tysk C, Lindberg E, Jarnerot G, Floderus-Myrhed B. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins: a study of heritability and the influence of smoking. Gut 1988; 29: 990–6.

    PubMed  CAS  Google Scholar 

  41. Hayward AR. Lymphoid cell development. In: Litwin SD, Scott DW, Reisfeld RA, Flaherty L, Marcus DM, eds. Human Immunogenetics. New York: Marcel Dekker, 1989: 145–62.

    Google Scholar 

  42. Comes MC, Gower-Rousseau C, Colombel JF et al. Inflammatory bowel disease in married couples: 10 cases in Nord Pas de Calais region of France and Liege county of Belgium. Gut 1994; 35: 1316–18.

    PubMed  CAS  Google Scholar 

  43. Yang H, Rotter JI. Inflammatory bowel disease. In: Rimoin DL, Connor JM, Pyeritz RE, Emery AEH, eds. Principles and Practice of Medical Genetics, 3rd edn. London: Churchill Livingstone, 1997: 1533–53.

    Google Scholar 

  44. Hall JG. Turner syndrome. In: King RA, Rotter JI, Motuls-ky AG, eds. The Genetic Basis of Common Diseases. New York: Oxford University Press, 1992: 895–914.

    Google Scholar 

  45. Witkop CJ, Quevedo WC, Fitzpatrick TB, King RA. Albinism. In: Scriver C, Beaudet AL, Sly WS, Valle D, eds. The Metabolic Basic of Inherited Disease, 6th edn. New York: McGraw-Hill, 1989: 2905–48.

    Google Scholar 

  46. Schinella RA, Grego A, Cobert BT, Denmark LW, Cox RP. Hermansky-Pudlak syndrome with granulomatous colitis. Ann Intern Med 1980; 92: 20–3.

    PubMed  CAS  Google Scholar 

  47. Mahadero R, Markowitz J, Fisher S, Daum F. Hermansky-Pudlak syndrome with granulomatous colitis in children. J Pediatr 1991; 118: 904–6.

    Google Scholar 

  48. Shanahan F, Randolph LM, King R et al. The Hermansky-Pudlak syndrome: an immunological assessment of 15 cases. Am J Med 1989; 85: 823–8.

    Google Scholar 

  49. Couper R, Kapelushnik J, Griffiths AM. Neutrophil dysfunction in glycogen storage disease IB: association with Crohn’s-like colitis. Gastroenterology 1991; 100: 549–54.

    PubMed  CAS  Google Scholar 

  50. Roe TF, Coates TD, Thomas DW, Miller JH, Gilsanz V. Brief report: treatment of chronic inflammatory bowel disease in glycogen storage disease type Ib with colony-stimulating factors. N Engl J Med 1992; 326: 1666–9.

    Article  PubMed  CAS  Google Scholar 

  51. Wildenberg SC, Oetting WS, Almodovar C, Krumwiede M, White JG, King RA. A gene causing Hermansky Pudlak syndrome in a Puerto Rican population maps to chromosome 10q2. Am J Hum Genet 1995; 57: 755–65.

    PubMed  CAS  Google Scholar 

  52. Oh J, Bailin T, Fukai K et al. Positional cloning of a gene for Hermansky Pudlak syndrome, a disorder of cytoplasmic organdies. Nat Genet 1996; 14: 300–6.

    PubMed  CAS  Google Scholar 

  53. Gardner JM, Wildenberg SC, Keiper NM et al. The mouse pale car (ep) mutation is the homologue of human Hermansky Pudlak syndrome. Proc Natl Acad Sci USA 1997; 94: 9238–43.

    PubMed  CAS  Google Scholar 

  54. Hazelwood S, Shotelersuk V, Wildenberg SC et al. Evidence for locus heterogeneity in Puerto Ricans with Hermansky Pudlak syndrome. Am J Hum Genet 1997; 61: 1088–94.

    PubMed  CAS  Google Scholar 

  55. Oh J, Ho L, Ala-Mello S et al. Mutation analysis of patients with Hermansky-Pudlak syndrome: a frameshift hot spot in the HPS gene and apparent locus heterogeneity. Am J Hum Genet 1998; 62: 593–8.

    PubMed  CAS  Google Scholar 

  56. Gahl WA, Brantly M, Kaiser-Kupfer MI et al. Genetic defects and clinical characteristics of patients with a form of oculocutaneous albinism (Hermansky-Pudlak syndrome). N Engl J Med 1998; 338: 1258–64.

    PubMed  CAS  Google Scholar 

  57. Ament ME, Ochs HD. Gastrointestinal manifestations of chronic granulomatous disease. N Engl J Med 1973; 288: 382–7.

    Article  PubMed  CAS  Google Scholar 

  58. Werlin SL, Chusid MJ, Caya J, Oechler HW. Colitis in chronic granulomatous disease. Gastroenterology 1982; 82: 328–31.

    PubMed  CAS  Google Scholar 

  59. Sloan JM, Cameron CHS, Maxwell RJ, McClusky DR, Collins JSA. Colitis complicating chronic granulomatous disease. A clinicopathological case report. Gut 1996; 38: 619–22.

    PubMed  CAS  Google Scholar 

  60. Vannier JP, Arnaud-Battandier F, Ricour C et al. Chronic neutropenia and Crohn’s disease in childhood. Report of 2 cases. Arch Fr Pediatr 1982; 39: 367–70.

    PubMed  CAS  Google Scholar 

  61. Stevens C, Peppercorn MA, Grand RJ. Crohn’s disease associated with autoimmune neutropenia. J Clin Gastroenterol 1991; 13: 328–30.

    PubMed  CAS  Google Scholar 

  62. D’Agata ID, Paradis K, Chad Z, Bonny Y, Seidman E. Leucocyte adhesion deficiency presenting as a chronic ileocolitis. Gut 1996; 39: 5–8.

    Google Scholar 

  63. Eng C, Farraye FA, Shulman LN et al. The association between the myelodysplastic syndromes and Crohn disease. Ann Intern Med 1992; 117: 661–2.

    PubMed  CAS  Google Scholar 

  64. Seymour JF. Association between myelodysplastic syndromes and inflammatory bowel diseases. Report of seven new cases and review of the literature. Leukemia 1998; 12: 1331–2.

    PubMed  CAS  Google Scholar 

  65. Hebbar M, Kozlowski D, Wattel E et al. Association between myelodysplastic syndromes and inflammatory bowel diseases. Report of seven new cases and review of the literature. Leukemia 1997; 11: 2188–91.

    PubMed  CAS  Google Scholar 

  66. Compton RF, Sandborn WJ, Yang H et al. A new syndrome of Crohn’s disease and pachydermoperiostosis in a family. Gastroenterology 1997; 112: 241–9.

    PubMed  CAS  Google Scholar 

  67. Caruso ML, Cristofaro G, Lynch HT. HNPCC-Lynch syndrome and idiopathic inflammatory bowel disease. A hypothesis on sharing of genes. Anticancer Res 1997; 17: 2647–9.

    PubMed  CAS  Google Scholar 

  68. Yang H, Shohat T, Rotter JI. The genetics of inflammatory bowel disease. In: McDermott RP, Stenson WF, eds. Inflammatory Bowel Disease. New York: Elsevier, 1992: 17–51.

    Google Scholar 

  69. Kirsner JB. Inflammatory bowel disease — clinical, etiological and genetic aspects. In: Rotter JI, Samloff IM, Rimoin DL, eds. Genetics and Heterogeneity of Common Gastrointestinal Disorders. New York: Academic Press, 1980: 261–80.

    Google Scholar 

  70. Kuster W, Pascoe L, Purrmann J, Funk S, Majewski F. The genetics of Crohn disease: complex segregation analysis of a family study with 265 patients with Crohn disease and 5,387 relatives. Am J Med Genet 1989; 32: 105–8.

    PubMed  CAS  Google Scholar 

  71. Orholm M, Iselius L, Sorensen TIA, Munkholm P, Langholz E, Binder V. Investigation of inheritance of chronic inflammatory bowel disease by complex segregation anslysis. Br Med J 1993; 306: 20–4.

    CAS  Google Scholar 

  72. Monsen U, Iselius L, Johansson C, Hellers G. Evidence for a major additive gene in ulcerative colitis. Clin Genet 1989; 36: 411 14.

    Google Scholar 

  73. McConnell RB. Inflammatory bowel disease: newer views of genetic influences. In: Berk JE, eds. Developments in Digestive Disease, Vol 3, 3rd edn. Philadelphia: Lea and Febiger, 1980: 129–37.

    Google Scholar 

  74. Rotter JI. The genetics of peptic ulcer disease — more than one gene,more than one disease. Prog Med Genet 1980; 4: 1–58.

    PubMed  CAS  Google Scholar 

  75. Rotter JI. Genetics in gastroenterology. In: Gitnick G, Hollander D, Kaplowitz N, Samloff IM, Schoenfield LJ, eds. Principles and Practices of Gastroenterology. New York: Elsevier, 1988: 1501–25.

    Google Scholar 

  76. Greenberg DA, Rotter JI. Two locus models for gluten sensitive eneropathy: population genetic considerations. Am J Med Genet 1981; 8: 205–14.

    PubMed  Google Scholar 

  77. Rotter JI, Landaw EM. Measuring the genetic contribution of a single locus to a multilocus disease. Clin Genet 1984; 26: 529–42.

    Article  PubMed  CAS  Google Scholar 

  78. Lin HJ, Rotter JI, Conte WJ. Use of HLA marker associations and HLA haplotype linkage to estimate disease risks in families with glutensensitive enteropathy. Clin Genet 1985; 28: 185–98.

    Article  PubMed  CAS  Google Scholar 

  79. Bennett RA, Rubin PH, Present DH. Frequency of inflammatory bowel disease in offspring of couples both presenting with inflammatory bowel disease. Gastroenterology 1991; 100: 1638–43.

    PubMed  CAS  Google Scholar 

  80. McInnis MG. Anticipation: an old idea in new genes. Am J Hum Genet 1996; 59: 973–9.

    PubMed  CAS  Google Scholar 

  81. Howeler CJ, Busch HFM, Geraedts JPM, Niermeijer MF, Staal A. Anticipation in myotonic dystrophy: fact or fiction? Brain 1989; 112: 779–97.

    PubMed  Google Scholar 

  82. Brook JD, McCurrach ME, Harley HG et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell 1992; 68: 799–808.

    PubMed  CAS  Google Scholar 

  83. Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72: 971–83.

    Google Scholar 

  84. Verkerk AJ, Pieretti M, Sutcliffe JS et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991; 65: 905–14.

    PubMed  CAS  Google Scholar 

  85. Orr HT, Chung MY, Banfi S et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993; 4: 221–6.

    PubMed  CAS  Google Scholar 

  86. Polito JM, Rees RC, Childs B, Mendeloff AI, Harris ML, Bayless TM. Preliminary evidence for genetic anticipation in Crohn’s disease. Lancet 1996; 347: 798–800.

    PubMed  Google Scholar 

  87. Grandbastien B, Peeters M, Franchimont D et al. Anticipation in familial Crohn’s disease. Gut 1998; 42: 170–4.

    Article  PubMed  CAS  Google Scholar 

  88. Lee JC, Bridger S, McGregor C, Macpherson AJ, Jones JE. Why children with inflammatory bowel disease are diagnosed at a younger age than their affected parent. Gut 1999; 44: 808–11.

    Article  PubMed  CAS  Google Scholar 

  89. Hampe J, Heymann K, Kruis W, Raedler A, Folsch UR, Schreiber S. Anticipation in inflammatory bowel disease: a phenomenon caused by an accumulation of confounders. Am J Med Genet 2000; 92: 178–83.

    PubMed  CAS  Google Scholar 

  90. Fraser FC. Trinucleotide repeats are not the only cause of genetic anticipation. Am J Med Genet 1997; 75: 337.

    Google Scholar 

  91. Petronis A, Kennedy JL, Paterson AD. Genetic anticipation: fact or artifact, genetics or epigenetics? Lancet 1997; 350: 1403–4.

    PubMed  CAS  Google Scholar 

  92. Moll JMH. Inflammatory bowel disease. Clin Rheum Dis 1985; 11: 87–111.

    PubMed  CAS  Google Scholar 

  93. Purrmann J, Zeidler H, Bertrams J et al. HLA antigens in ankylosing spondylitis associated with Crohn’s disease. Increased frequency of the HLA phenotype B27,B44. J Rheumatol 1988; 15: 1658–61.

    PubMed  CAS  Google Scholar 

  94. Mallas EG, Mackintosh P, Asquith P, Cooke WT. Histocompatibility antigens in inflammatory bowel disease. Their clinical significance and their association with arthropathy with special reference to HLA-B27 (w27). Gut 1976; 17: 906–10.

    PubMed  CAS  Google Scholar 

  95. Russell AS. Transplantation antigens in Crohn’s disease: linkage of associated ankylosing spondylistis with HL-Aw27. Am J Dig Dis 1975; 20: 359–61.

    PubMed  CAS  Google Scholar 

  96. Dekker-Saeys BJ, Meuwissen SG, Van Den Berg-Loonen EM, De Haas WH, Meijers KA, Tytgat GN. Ankylosing spondylitis and inflammatory bowel disease. III. Clinical characteristics and results of histocompatibility typing (HLA B27) in 50 patients with both ankylosing spondylitis and inflammatory bowel disease. Ann Rheum Dis 1978; 37: 36–41.

    PubMed  CAS  Google Scholar 

  97. Huaux JP, Fiasse R, de Bruyere M, Nigant de Deuxchaisnes C. HLA-B27 in sacroilitis. J Rheumatol 1977; 3: 60–3.

    CAS  Google Scholar 

  98. Khan MA. HLA-B27 and B12 (B44) in Crohn’s disease with ankylosing spondylitis. J Rheumatol 1989; 16: 851–2.

    PubMed  CAS  Google Scholar 

  99. Gilvarry J, Keeling F, Fielding JF. Sibship Crohn’s disease and ankylosing spondylitis. J Clin Gastroenterol 1990; 12: 711–12.

    PubMed  CAS  Google Scholar 

  100. Jayson MIV, Salmon PR, Harrison WJ. Inflammatory bowel disease in ankylosing spondylitis. Gut 1970; 11: 506–11.

    PubMed  CAS  Google Scholar 

  101. Mielants H, Veys EM. Ileal inflammation in B27-positive reactive arthritis. Lancet 1984; 1: 1072.

    PubMed  CAS  Google Scholar 

  102. Mielants H, Veys EM. Inflammation of the ileum in patients with B27-positive reactive arthritis. Lancet 1984; 1: 288.

    PubMed  CAS  Google Scholar 

  103. De Keyser F, Elewaut D, De Vos M et al. Bowel inflammation and the spondyloarthropathies. Rheum Dis Clin N Am 1998; 24: 785–813, ix–x.

    Google Scholar 

  104. Mielants H, Veys EM, Cuvelier C et al. The evolution of spondyloarthropathies in relation to gut histology. II. Histological aspects. J Rheumatol 1995; 22: 2273–8.

    PubMed  CAS  Google Scholar 

  105. De Vos M, Mielants H, Cuvelier C, Elewaut A, Veys E. Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology 1996; 110: 1696–703.

    PubMed  Google Scholar 

  106. Russell AS. Arthritis, inflammatory bowel disease, and histocompatibility antigens. Ann Intern Med 1977; 86: 820–1.

    PubMed  CAS  Google Scholar 

  107. Rath HC, Herfarth HH, Ikeda JS et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 1996; 98: 945–53.

    PubMed  CAS  Google Scholar 

  108. Yates VM, Watkinson G, Kelman A. Further evidence for an association between psoriasis, Crohn’s disease and ulcerative colitis. Br J Dermatol 1982; 106: 323–30.

    PubMed  CAS  Google Scholar 

  109. Lee FI, Bellary SV, Francis C. Increased occurrence of psoriasis in patients with Crohn’s disease and their relatives. Am J Gastroenterol 1990; 85: 962–3.

    PubMed  CAS  Google Scholar 

  110. Hammer B, Ashurst P, Naish J. Diseases associated with ulcerative colitis and Crohn’s disease. Gut 1968; 9: 17–21.

    PubMed  CAS  Google Scholar 

  111. Trembath RC, Clough RL, Rosbotham JL et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet 1997; 6: 813–20.

    PubMed  CAS  Google Scholar 

  112. Matthews D, Fry L, Powles A et al. Evidence that a locus for familial psoriasis maps to chromosome 4q. Nat Genet 1996; 14: 231–3.

    PubMed  CAS  Google Scholar 

  113. Nair RP, Henseler T, Jenisch S et al. Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and 20p) by genome-wide scan. Hum Mol Genet 1997; 6: 1349–56.

    PubMed  CAS  Google Scholar 

  114. Bhalerao J, Bowcock AM. The genetics of psoriasis: a complex disorder of the skin and immune system. Hum Mol Genet 1998; 7: 1537–45.

    PubMed  CAS  Google Scholar 

  115. Hugot JP, Laurent-Puig P, Gower-Rousseau C et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16 by a genomewide nonparametric linkage analysis. Nature 1996; 379: 821–3.

    PubMed  CAS  Google Scholar 

  116. Weisner RH, LaRusso NF. Clinicopathologic features of the syndrome of primary sclerosing cholangitis. Gastroenterology 1980; 79: 200–6.

    Google Scholar 

  117. Chapman RW, Arborgh BA, Rhodes JM et al. Primary sclerosing cholangitis: a review of its clinical features, cholangiography, and hepatic histology. Gut 1980; 21: 870–7.

    PubMed  CAS  Google Scholar 

  118. Wewer V, Gluud C, Schlichting P, Burcharth F, Binder V. Prevalence of hepatobiliary dysfunction in a regional group of patients with chronic inflammatory bowel disease. Scand J Gastroenterol 1991; 26: 97–102.

    PubMed  CAS  Google Scholar 

  119. Olsson R, Danielsson A, Jarnerot G et al. Prevalence of primary sclerosing cholangitis in patients with ulcerative colitis. Gastroenterology 1991; 100: 1319–23.

    PubMed  CAS  Google Scholar 

  120. Rasmussen HH, Fallingborg J, Mortensen PB et al. Primary sclerosing cholangitis in patients with ulcerative colitis. Scand J Gastroenterol 1992; 27: 732–6.

    PubMed  CAS  Google Scholar 

  121. Broome U, Lofberg R, Lundqvist K, Veress B. Subclinical time span of inflammatory bowel disease in patients with primary sclerosing cholangitis. Dis Colon Rectum 1995; 38: 1301–5.

    PubMed  CAS  Google Scholar 

  122. Chapman RW, Cottone M, Selby WS, Shepherd HA, Sherlock S, Jewell DP. Serum autoantibodies, ulcerative colitis and primary sclerosing cholangitis. Gut 1986; 27: 86–91.

    PubMed  CAS  Google Scholar 

  123. Das KM, Vecchi M, Sakamaki S. A shared and unique epitope(s) on human colon, skin, and biliary epithelium detected by a monoclonal antibody. Gastroenterology 1990; 98: 464–9.

    PubMed  CAS  Google Scholar 

  124. Duerr RH, Targan SR, Landers CJ, Sutherland LR, Shanahan F. Antineutrophil cytoplasmic antibodies in ulcerative colitis. Comparison with other colitides/diarrheal illnesses. Gastroenterology 1991; 100: 1590–6.

    PubMed  CAS  Google Scholar 

  125. Zauli D, Baffoni L, Cassani F. Antineutrophil cytoplasmic antibodies in primary sclerosing cholangitis, ulcerative colitis, and autoimmune diseases. Gastroenterology 1992; 102: 1088–95.

    PubMed  CAS  Google Scholar 

  126. Lo SK, Fleming KA, Chapman RW. Prevalence of antineutrophil antibody in primary sclerosing cholangitis and ulcerative colitis using an alkaline phosphatase technique. Gut 1992; 33: 1370–5.

    PubMed  CAS  Google Scholar 

  127. Seibold F, Weber P, Klein R, Berg PA, Wiedmann KH. Clinical significance of antibodies against neutrophils in patients with inflammatory bowel disease and primary sclerosing cholangitis. Gut 1992; 33: 657–62.

    PubMed  CAS  Google Scholar 

  128. Shepherd HA. Ulcerative colitis and persistent liver dysfunction. Q J Med 1983; 52: 503–13.

    PubMed  CAS  Google Scholar 

  129. Prochazka EJ, Terasaki PI, Park MS, Goldstein LI, Busuttil RW. Association of primary sclerosing cholangitis with HLA-DRw52a. N Engl J Med 1990; 322: 1842–4.

    Article  PubMed  CAS  Google Scholar 

  130. Zetterquist H, Broome U, Einarsson K, Olerup O. HLA class II genes in primary sclerosing cholangitis and chronic inflammatory bowel disease: no HLA-DRw52a association in Swedish patients with sclerosing cholangistis. Gut 1992; 33: 942–6.

    PubMed  CAS  Google Scholar 

  131. Olerup O, Broome U, Einarsson K, Zetterquist H. Inability to attribute susceptibility to primary sclerosing cholangitis to specific amino acid positions of the HLA-DRw52 allele. N Engl J Med 1991; 325: 1251–2.

    Article  Google Scholar 

  132. Donaldson PT. Dual association of HLA DR2 and DR3 with primary sclerosing cholangitis. Hepatology 1991; 13: 129–33.

    PubMed  CAS  Google Scholar 

  133. Toyoda H, Wang SJ, Yang H Y et al. Distinct associations of HLA class II genes with inflammatory bowel disease. Gastroenterology 1993; 104: 741–8.

    PubMed  CAS  Google Scholar 

  134. Sugimura K, Asakura H, Mizuki N et al. Analysis of genes within the HLA region affecting susceptibility to ulcerative colitis. Hum Immunol 1993; 36: 112–18.

    PubMed  CAS  Google Scholar 

  135. Hirv K, Seyfarth M, Uibo R et al. Polymorphisms in tumour necrosis factor and adhesion molecule genes in patients with inflammatory bowel disease: associations with HLA-DR and —DQ alleles and subclinical markers. Scand J Gastroenterol 1999; 34: 1025–32.

    PubMed  CAS  Google Scholar 

  136. Satsangi J, Landers CJ, Welsh KI, Koss K, Targan S, Jewell DP. The presence of antineutrophil antibodies reflects clinical and genetic heterogeneity within inflammatory bowel disease. Inflam Bowel Dis 1998; 4: 18–26.

    Article  CAS  Google Scholar 

  137. Bayraktar Y, Arslan S, Saglam F, Uzunalimoglu B, Kayhan B. What is the association of primary sclerosing cholangitis with sex and inflammatory bowel disease in Turkish patients? Hepato-Gastroenterology 1998; 45: 2064–72.

    PubMed  CAS  Google Scholar 

  138. Kelly P, Patchett S, McCloskey D, Alstead E, Farthing M, Fairclough P. Sclerosing cholangitis, race and sex. Gut 1997; 41: 688–9.

    Article  PubMed  CAS  Google Scholar 

  139. Dozois RR, Kelly KA, Welling DR et al. Heal pouch-anal anastomosis: comparison of results in familial adenomatous polyposis and chronic ulcerative colitis. Ann Surg 1989; 210: 268–71.

    PubMed  CAS  Google Scholar 

  140. Sandborn WJ. Pouchitis following ileal pouch-anal anastomosis: definition, pathogenesis, and treatment. Gastroenterology 1994; 107: 1856–60.

    PubMed  CAS  Google Scholar 

  141. Lohmuller JL, Pemberton JH, Dozois RR, Ilstrup D, van Heerden J. Pouchitis and extraintestinal manifestations of inflammatory bowel disease after ileal pouchanal anastomosis. Ann Surg 1990; 211: 622–67.

    PubMed  CAS  Google Scholar 

  142. Penna C, Dozois R, Tremaine W et al. Pouchitis after ileal pouchanal anastomosis for ulcerative colitis occurs with increased frequency in patients with associated primary sclerosing cholangitis. Gut 1996; 38: 234–9.

    PubMed  CAS  Google Scholar 

  143. Yang P, Oresland T, Jarnerot G, Hulten L, Danielsson D. Perinuclear antineutrophil cytoplasmic antibody in pouchitis after proctocolectomy with ileal pouch-anal anastomosis for ulcerative colitis. Scand J Gastroenterol 1996; 31: 594–8.

    PubMed  CAS  Google Scholar 

  144. Sandborn WJ, Landers CJ, Tremaine WJ, Targan SR. Antineutrophil cytoplasmic antibody correlates with chronic pouchitis after ileal pouch-anal anastomosis. Am J Gastroenterol 1995; 90: 740–7.

    PubMed  CAS  Google Scholar 

  145. Merrett MN, Mortensen N, Kettlewell M, Jewell DO. Smoking may prevent pouchitis in patients with restorative proctocolectomy for ulcerative colitis. Gut 1996; 38: 362–4.

    PubMed  CAS  Google Scholar 

  146. Sadovnick AD, Paty DW, Yannakoulias G. Concurrence of multiple sclerosis and inflammatory bowel disease. N Engl J Med 1989; 321: 762–3.

    PubMed  CAS  Google Scholar 

  147. Minuk GY, Lewkonia RM. Possible familial association of multiple sclerosis and inflammatory bowel disease. N Engl J Med 1986; 314: 580–6.

    Google Scholar 

  148. Rang EH, Brooke BN, Hermon-Taylor J. Association of ulcerative colitis and multiple sclerosis. Lancet 1982; 2: 555.

    PubMed  CAS  Google Scholar 

  149. Kitchin LI, Knobler RL, Friedman LS. Crohn’s disease in a patient with multiple sclerosis. J Clin Gastroenterol 1991; 13: 331–4.

    PubMed  CAS  Google Scholar 

  150. Purrmannn J, Arendt G, Cleveland S et al. Association ofCrohn’s disease and multiple sclerosis. Is there a common background? J Clin Gastroenterol 1992; 14: 43–6.

    Google Scholar 

  151. Yacyshyn B, Meddings J, Sadowski D, Bowen-Yachyshyn MB. Multiple sclerosis patients have peripheral blood CD45RO+ B cells and increased intestinal permeability. Dig Dis Sci 1996; 41: 2493–8.

    PubMed  CAS  Google Scholar 

  152. Jarnerot G, Azad Khan AK, Truelove SC. The thyroid in ulcerative colitis and Crohn’s disease. II. Thyroid enlargement and hyperthyroidism in ulcerative colitis. Acta Med Scand 1975; 197: 83–7.

    Article  PubMed  CAS  Google Scholar 

  153. Snook JA, de Silva HJ, Jewell DP. The association of autoimmune disorders with inflammatory bowel disease. Q J Med 1989; 72: 835–40.

    PubMed  CAS  Google Scholar 

  154. Snook J. Are the inflammatory bowel diseases autoimmune disorders? Gut 1990; 31: 961–3.

    PubMed  CAS  Google Scholar 

  155. Cottone M, Cappello M, Puleo A, Cipolla C, Filippazzo MG. Familial association of Crohn’s and coeliac diseases. Lancet 1989; 2: 338.

    PubMed  CAS  Google Scholar 

  156. Breen EG, Coughlan G, Connolly CE, Stevens FM. Coeliac proctitis. Scand J Gastroenterol 1987; 22: 471–7.

    PubMed  CAS  Google Scholar 

  157. Becker KG, Simon RM, Biddison WE, Bailey-Wilson JE, McFarland HF, Trent JM. Clustering of non-MHC susceptibility candidate loci in human autoimmune diseases. Am J Hum Genet 1997; 61: A267.

    Google Scholar 

  158. Sels F, Westhovens R, Emonds MP, Vandermeulen E, Dequeker J. HLA typing in a large family with multiple cases of different autoimmune diseases. J Rheumatol 1997; 24: 856–9.

    PubMed  CAS  Google Scholar 

  159. Jick H, Walker AM. Cigarette smoking and ulcerative colitis. N Engl J Med 1983; 308: 261–3.

    Article  PubMed  CAS  Google Scholar 

  160. Calkins BM. A meta-analysis of the role of smoking in inflammatory bowel disease. Dig Dis Sci 1989; 34: 1841–54.

    PubMed  CAS  Google Scholar 

  161. Gent AE, Hellier MD, Grace RH, Swarbrick ET, Coggon D. Inflammatory bowel disease and domestic hygiene in infancy. Lancet 1994; 343: 766–7.

    PubMed  CAS  Google Scholar 

  162. Rotter JI. Inflammatory bowel disease. Lancet 1994; 343: 1360.

    PubMed  CAS  Google Scholar 

  163. Montgomery SM, Pounder RE, Wakefield AJ. Infant mortality and the incidence of inflammatory bowel disease. Lancet 1997; 349: 472–3.

    PubMed  CAS  Google Scholar 

  164. Montgomery SM, Morris DL, Pounder RE, Wakefield AJ. Paramyxovirus infections in childhood and subsequent inflammatory bowel disease. Gastroenterology 1999; 116: 796–803.

    PubMed  CAS  Google Scholar 

  165. Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology 1995; 109: 1344–67.

    PubMed  CAS  Google Scholar 

  166. Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell 1990; 63: 1099–112.

    PubMed  CAS  Google Scholar 

  167. Taurog JD, Richardson JA, Croft JT et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994; 180: 2359–64.

    PubMed  CAS  Google Scholar 

  168. Cahill RJ, Foltz CJ, Fox JG, Dangler CA, Powrie F, Schauer DB. Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect Immun 1997; 65: 3126–31.

    PubMed  CAS  Google Scholar 

  169. Diamond JM, Rotter JI. Observing the founder effect in human evolution. Nature 1987; 329: 105–6.

    PubMed  CAS  Google Scholar 

  170. Rotter JI, Diamond JM. What maintains the frequencies of human genetic diseases? Nature 1987; 329: 289–90.

    PubMed  CAS  Google Scholar 

  171. Petersen GM, Rotter JI, Cantor RM et al. The Tay-Sachs disease gene in North American Jewish populations: geographic variations and origin. Am J Hum Genet 1983; 35: 1258–69.

    PubMed  CAS  Google Scholar 

  172. Targan SR, Murphy LK. Clarifying the causes of Crohn’s. Nat Med 1995; 1: 1241–3.

    PubMed  CAS  Google Scholar 

  173. Vasiliauskas EA, Plevy SE, Landers CJ et al. Perinuclear antineutrophil cytoplasmic antibodies in patients with Crohn’s disease define a clinical subgroup. Gastroenterology 1996; 110: 1810–9.

    PubMed  CAS  Google Scholar 

  174. Vasiliauskas EA, Kam LY, Karp LC, Gaiennie J, Yang H, Targan SR. Marker antibody expression stratifies Crohn’s disease into immunologically homogeneous subgroups with clinical characteristics. Gut 2000; 47: 487–96.

    PubMed  CAS  Google Scholar 

  175. Gilberts EC, Greenstein AJ, Katsel P, Harpaz N, Greenstein RJ. Molecular evidence for two forms of Crohn disease. Proc Natl Acad Sci USA 1994; 91: 12721–4.

    PubMed  CAS  Google Scholar 

  176. Colombel JF, Grandbastien B, Gower-Rousseau B et al. Clinical characteristics of Crohn’s disease in 72 families. Gastroenterology 1996; 111: 604–7.

    PubMed  CAS  Google Scholar 

  177. Bayless TM, Tokayer AZ, Polito JM, Quaskey SA, Mellits ED, Harris ML. Crohn’s disease: concordance for site and clinical type in affected family members — potential hereditary influences. Gastroenterology 1996; 111: 573–9.

    PubMed  CAS  Google Scholar 

  178. Cottone M, Brignola C, Rosselli M et al. Relationship between site of disease and familial occurrence in Crohn’s disease. Dig Dis Sci 1997; 42: 129–32.

    PubMed  CAS  Google Scholar 

  179. King RA, Rotter JI, Motulsky AG. The Genetic Basis of Common Diseases. New York: Oxford University Press, 1992.

    Google Scholar 

  180. Targan SR, Deem RL, Liu M, Wang S, Nel A. Definition of a lamina propria T cell responsive state. Enhanced cytokine responsiveness of T cells stimulated through the CD2 pathway. J Immunol 1995; 154: 664–75.

    PubMed  CAS  Google Scholar 

  181. Seibold F, Brandwein S, Simpson S, Terhorst C, Elson CO. pANCA represents a cross-reactivity to enteric bacterial antigens. J Clin Immunol 1998; 18: 153–60.

    PubMed  CAS  Google Scholar 

  182. Lindberg E, Magnusson K-E, Tysk C, Jarnerot G. Antibody (IgG,IgA,and IgM) to baker’s yeast (Saccharomyces cerevisiae), yeast mannan, gliadin, ovalbumin and betalactoglobulin in monozygotic twins with inflammatory bowel disease. Gut 1992; 33: 909–13.

    PubMed  CAS  Google Scholar 

  183. McKenzie H, Main J, Pennington CR, Parratt D. Antibody to selected strains of Saccharomyces cerevisiae (baker’s and brewer’s yeast) and Candida albicans in Crohn’s disease. Gut 1990; 31: 536–8.

    PubMed  CAS  Google Scholar 

  184. Vecchi M, Gionchetti P, Bianchi MB et al p-ANCA and development of pouchitis in ulcerative colitis patients after proctocolectomy and ileoanal pouch anastomosis. Lancet 1994; 344: 886–7.

    PubMed  CAS  Google Scholar 

  185. Shanahan F, Duerr RH, Rotter JI et al. Neutrophil autoantibodies in ulcerative colitis: familial aggregation and genetic heterogeneity. Gastroenterology 1992; 103: 456–61.

    PubMed  CAS  Google Scholar 

  186. Yang H, Rotter JI, Toyoda H et al. Ulcerative colitis: a genetically heterogeneous disorder defined by genetic (HLA class II) and subclinical (anti-neutrophil cytoplasmic antibodies) markers. J Clin Invest 1993; 92: 1080–4.

    PubMed  CAS  Google Scholar 

  187. Yang H, Vora DK, Targan SR, Toyoda H, Beaudet AL, Rotter JI. Intercellular adhesion molecule 1 gene associations with immunologic subsets of inflammatory bowel disease. Gastroenterology 1995; 109: 440–8.

    PubMed  CAS  Google Scholar 

  188. Seibold F, Slametschka D, Gregor M, Weber P. Neutrophil autoantibodies: a genetic marker in primary sclerosing cholangitis and ulcerative colitis. Gastroenterology 1994; 107: 532–6.

    PubMed  CAS  Google Scholar 

  189. Lee JCW, Lennard-Jones JE, Cambridge G. Antineutrophil antibodies in familial inflammatory bowel disease. Gastroenterology 1995; 108: 428–33.

    PubMed  CAS  Google Scholar 

  190. Yang P, Jarnerot G, Danielsson D, Tysk C, Lindberg E. P ANCA in monozygotic twins with inflammatory bowel disease. Gut 1995; 36: 887–90.

    PubMed  CAS  Google Scholar 

  191. Shanahan F. Neutrophil autoantibodies in inflammatory bowel disease: are they important? Gastroenterology 1994; 107: 586–9.

    PubMed  CAS  Google Scholar 

  192. Sutton CL, Yang H, Li Z, Rotter JI, Targan SR, Braun J. Familial expression of anti-Saccharomyces cerevisiae mannan antibodies in affected and unaffected relatives of patients with Crohn’s disease. Gut 2000; 46: 58–63.

    PubMed  CAS  Google Scholar 

  193. Taylor KD, Vasiliauskas EA, Kam LY et al. Specific clinical and immunological features in Crohn’s disease patients are associated with the MHC class III marker Notch4. Gastroenterology 2000; 118: A869.

    Google Scholar 

  194. Taylor KD, Li Z, Barry M et al. Tumor necrosis factor microsatellite haplotype A11B4C1D3E3 is associated with anti-Saccharomyces cerevisiae antibody (ASCA) across clinical forms of inflammatory bowel disease. Gastroenterology 1998; 114: A1098.

    Google Scholar 

  195. Yang H, Taylor KD, Lin YC, Targan SR, Rotter JI. Magnitude of anti-Saccharomyces cerevisiae antibody (ASCA) expression is linked in Crohn’s disease families to the major histocompatibility complex (MHC) region. Gastroenterology 2000; 118: A339.

    Google Scholar 

  196. Fiocchi C, Roche JK, Michener WM. High prevalence of antibodies to intestinal epithelial antigens in patients with inflammatory bowel disease and their relatives. Ann Intern Med 1989; 110: 786–94.

    PubMed  CAS  Google Scholar 

  197. Folwaczny C, Noehl N, Endres SP, Heldwein W, Loeschke K, Fricke H. Antinuclear autoantibodies in patients with inflammatory bowel disease. High prevalence in first-degree relatives. Dig Dis Sci 1997; 42: 1593–7.

    PubMed  CAS  Google Scholar 

  198. Elmgreen J, Both H, Binder V. Familial occurrence of complement dysfunction in Crohn’s disease: correlation with intestinal symptoms and hypercatabolism of complement. Gut 1985; 26: 151–7.

    PubMed  CAS  Google Scholar 

  199. Hollander D. Permeability in Crohn’s disease: altered barrier functions in healthy relatives? Gastroenterology 1993; 104: 1848–51.

    PubMed  CAS  Google Scholar 

  200. Munkholm P, Langholz E, Hollander D et al. Intestinal permeability in patients with Crohn’s disease and ulcerative colitis and their first degree relatives. Gut 1994; 35: 68–72.

    PubMed  CAS  Google Scholar 

  201. Lindberg E, Soderholm JD, Olaison G, Tysk C, Jarnerot G. Intestinal permeability to polyethylene glycols in monozygotic twins with Crohn’s disease. Scand J Gastroenterol 1995; 30: 780–3.

    PubMed  CAS  Google Scholar 

  202. Peeters M, Geypens B, Claus D et al. Clustering of increased small intestinal permeability in families with Crohn’s dis ease. Gastroenterology 1997; 113: 802–7.

    PubMed  CAS  Google Scholar 

  203. Van de Merwe JP, Schroder AM, Wensinck F, Hazenberg MP. The obligate anaerobic faecal flora of patients with Crohn’s disease and their first-degree relatives. Scand J Gastroenterol 1988; 23: 1125–31.

    PubMed  Google Scholar 

  204. Sendid B, Quinton JF, Charrier G et al. Anti Saccharomyces cerevisiae mannan antibodies (ASCA) in healthy relatives of patients with Crohn’s disease. Gut 1997; 41: A177.

    Article  Google Scholar 

  205. Seibold F, Mork H, Tanza S et al. Pancreatic autoantibodies in Crohn’s disease: a family study. Gut 1997; 40: 481–4.

    PubMed  CAS  Google Scholar 

  206. Yang H, Rotter JI. Subclinical markers of human inflame matory bowel disease. Can J Gastroenterol 1995; d9: 161–7.

    Google Scholar 

  207. Tysk C, Riedesel H, Lindberg E, Panzini B, Podolsky D, Jarnerot G. Colonic glycoproteins in monozygotic twins with inflammatory bowel disease. Gastroenterology 1991; 100: 419–23.

    PubMed  CAS  Google Scholar 

  208. Helgeland L, Tysk C, Jarnerot G. IgG subclass distribution in serum and rectal mucosa of monozygotic twins with or without inflammatory bowel disease. Gut 1992; 33: 1358–64.

    PubMed  CAS  Google Scholar 

  209. Amelio RD, Rossi P, Moli SLE, Ricci R, Montano S, Pallone F. In vitro studies on cellular and humoral chemotaxis in Crohn’s disease using the under agarose gel technique. Gut 1981; 22: 566–70.

    PubMed  Google Scholar 

  210. Elmgreen J, Berkowicz A, Sorensen H. Hypercatabolism of complement in Crohn’s disease. Acta Med Scand 1983; 214: 403–7.

    Article  PubMed  CAS  Google Scholar 

  211. Lake AM, Stitzel AE, Urmson RJ, Walker WA, Spitzer RE. Complement alterations in inflammatory bowel disease. Gastroenterology 1979; 76: 374–9.

    Google Scholar 

  212. Hodgson HJF, Potter BJ, Jewell DP. C3 metabolism in ulcerative colitis and Crohn’s disease. Clin Exp Immunol 1977; 28: 490–5.

    PubMed  CAS  Google Scholar 

  213. Potter BJ, Brown DJC, Watson A, Jewell DP. Complement inhibitors and immunoconglutinins in ulcerative colitis and Crohn’s disease. Gut 1980; 2: 1030–4.

    Google Scholar 

  214. Halstensen TS, Mollnes TE, Brandzaeg P. Persistent complement activation in submucosal blood vessels of active inflammatory bowel disease: Immunohistochemical evidence. Gastroenterology 1989; 97: 10–19.

    PubMed  CAS  Google Scholar 

  215. Halstensen TS, Mollnes TE, Garred P, Fausa O, Brandtzaeg P. Epithelial deposition of immunoglobulin Gl and activated complement (C3b and terminal complement complex) in ulcerative colitis. Gastroenterology 1990; 98: 1264–71.

    PubMed  CAS  Google Scholar 

  216. Ahrenstedt O, Knutson L, Nisson B, Nilsson-Ekdahl K, Odlind B, Hallgren R. Enhanced local production of complement components in the small intestines of patients with Crohn’s disease. N Engl J Med 1990; 322: 1345–9.

    PubMed  CAS  Google Scholar 

  217. Ueki T, Mizuno M, Uesu T et al. Distribution of activated complement, C3b, and its degraded fragments, iC3b/C3dg, in the colonic mucosa of ulcerative colitis (UC). in the colonic mucosa of ulcerative colitis (UC). Clin Exp Immunol 1996; 104: 286–92

    PubMed  CAS  Google Scholar 

  218. Laufer J, Oren R, Goldberg I et al. Cellular localization of complement C3 and C4 transcripts in intestinal specimens from patients with Crohn’s disease. Clin Exp Immunol 2000; 120: 30–7.

    PubMed  CAS  Google Scholar 

  219. Wakefield AJ, Sawyer AM, Dhillon AP et al. Pathogenesis of Crohn’s disease: multifocal gastrointestinal infarction. Lancet 1989; 2: 1057–62.

    PubMed  CAS  Google Scholar 

  220. Wakefield AJ, Sankey EA, Dhillon AP et al. Granulomatous vasculitis in Crohn’s disease. Gastroenterology 1991; 100: 1279–87.

    PubMed  CAS  Google Scholar 

  221. Hudson M, Piasecki C, Sankey EA et al. A ferret model of acute multifocal gastrointestinal infarction. Gastroenterol 1992; 102: 1591–6.

    CAS  Google Scholar 

  222. Elmgreen J, Sorensen H, Berkowicz A. Polymorphism of complement C3 in chronic inflammatory bowel disease. Predominance of the C3F gene in Crohn’s disease. Acta Med Scand 1984; 215: 375–8.

    Article  PubMed  CAS  Google Scholar 

  223. Botto M, Fong KY, So AK, Koch C, Walport MJ. Molecular basis of polymorphisms of human complement component C3. J Exp Med 1990; 172: 1011–17.

    PubMed  CAS  Google Scholar 

  224. Hollander D, Vadheim CM, Brettholtz E, Petersen GM, Delahunty T, Rotter JI. Increased intestinal permeability in Crohn’s patients and their relatives: an etiological factor? Ann Intern Med 1986; 105: 883–95.

    PubMed  CAS  Google Scholar 

  225. Bjarnason I, Smethurst P, Levi AJ, Menzies IS, Peters TJ. The effect of polyacrylic acid polymers on small-intestinal function and permeability changes caused by indomethacin. Scand J Gastroenterol 1991; 26: 685–8.

    PubMed  CAS  Google Scholar 

  226. May GR, Sutherland LR, Meddings JB. Is small intestinal permeability really increased in relatives of patients with Crohn’s disease? Gastroenterology 1993; 104: 1627–32.

    PubMed  CAS  Google Scholar 

  227. van Elburg RM, Uil JJ, Mulder CJ, Heymans HS. Intestinal permeability in patients with coeliac disease and relatives of patients with coeliac disease. Gut 1993; 34: 354–7.

    PubMed  Google Scholar 

  228. Lim SG, Menzies IS, Lee CA, Johnson MA, Pounder RE. Intestinal permeability and function in patients infected with human immunodeficiency virus. A comparison with coeliac disease. Scand J Gastroenterol 1993; 28: 573–80.

    PubMed  CAS  Google Scholar 

  229. Fukushima K. Immunohistochemical characterization, distribution, and ultrastructure of lymphocytes bearing T-cell receptors in inflammatory bowel disease. Gastroenterology 1991; 101: 670–8.

    PubMed  CAS  Google Scholar 

  230. Kagnoff MF, Brown RJ, Schanfield MS. Association between Crohn’s disease and immunoglobulin heavy chain (Gm) allotypes. Gastroenterology 1983; 85: 1044–7.

    PubMed  CAS  Google Scholar 

  231. Biemond I, Delange GG, Weterman IT, Pena AS. Immuno globulin allotypes in Crohn’s disease in the Netherlands. Gut 1987; 28: 610–12.

    PubMed  CAS  Google Scholar 

  232. Ockhuizen T, Westra H, Bijzet J, Post J, van Leeuwen M, van Rijswijk M. Immunoglobulin allotypes are not involved in systemic amyloidosis. J Rheumatol 1985; 12: 742–6.

    PubMed  CAS  Google Scholar 

  233. Gudjonsson H, Schanfield MS, Albertini RJ, McAuliffe TL, Beeken WL, Krawitt EL. Association and linkage studies of immunoglobulin heavy chain allotypes in inflammatory bowel disease. Tissue Antigens 1988; 31: 243–9.

    PubMed  CAS  Google Scholar 

  234. Field LL, Boyd N, Bowen TJ, Kelly JK, Sutherland LR. Genetic markers and inflammatory bowel disease: immuno globulin allotypes (GM, KM) and protease inhibitor. Am J Gastroenterol 1989; 84: 753–5.

    PubMed  CAS  Google Scholar 

  235. Kett K, Rognum TO, Brandtzaeg P. Mucosal subclass distribution of immunoglobulin G-producing cells is different in ulcerative colitis and Crohn’s disease of the colon. Gastroenterology 1987; 93: 919–24.

    PubMed  CAS  Google Scholar 

  236. Elson CO, Cong Y, Brandwein S et al. Experimental models to study molecular mechanisms underlying intestinal inflammation. Ann NY Acad Sci 1998; 859: 85–95.

    PubMed  CAS  Google Scholar 

  237. Mahler M, Bristol IJ, Leiter EH et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am J Physiol 1998; 274: G544–51.

    PubMed  CAS  Google Scholar 

  238. Mahler M, Bristol IJ, Sundberg JP et al. Genetic analysis of susceptibility to dextran sulfate sodium-induced colitis in mice. Genomics 1999; 55: 147–56.

    PubMed  CAS  Google Scholar 

  239. Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun 1999; 67: 2969–74.

    PubMed  CAS  Google Scholar 

  240. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 1999; 10: 387–98.

    PubMed  CAS  Google Scholar 

  241. Cominelli F, Kontoyiannis D, Pizarro T, Kollias G. Contribution of TNF receptor (TNFR) types and T lymphocyte population to the pathogenesis of experimental Crohn’s disease (CD) in TNFDARE mutant mice. Gastroenterology 1999; 116: A690.

    Google Scholar 

  242. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993; 75: 253–61.

    PubMed  CAS  Google Scholar 

  243. Schultz M, Tonkonogy SL, Sellon RK et al. IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Physiol 1999; 276: G1461–72.

    PubMed  CAS  Google Scholar 

  244. Meijssen MA, Brandwein SL, Reinecker HC, Bhan AK, Podolsky DK. Alteration of gene expression by intestinal epithelial cells precedes colitis in interleukin-2-deficient mice. Am J Physiol 1998; 274: G472–9.

    PubMed  CAS  Google Scholar 

  245. Harren M, Schonfelder G, Paul M et al. High expression of inducible nitric oxide synthase correlates with intestinal inflammation of interleukin-2-deficient mice. Ann NY Acad Sci 1998; 859: 210–15.

    PubMed  CAS  Google Scholar 

  246. Ludviksson BR, Gray B, Strober W, Ehrhardt RO. Dysre-gulated intrathymic development in the IL-2-deficient mouse leads to colitis-inducing thymocytes. J Immunol 1997; 158: 104–11.

    PubMed  CAS  Google Scholar 

  247. Ehrhardt RO, Ludviksson BR, Gray B, Neurath M, Strober W. Induction and prevention of colonic inflammation in IL-2-deficient mice. J Immunol 1997; 158: 566–73.

    PubMed  CAS  Google Scholar 

  248. Ludviksson BR, Strober W, Nishikomori R, Hasan SK, Ehrhardt RO. Administration of mAb against alpha E beta 7 prevents and ameliorates immunization-induced colitis in IL-2-/-mice. J Immunol 1999; 162: 4975–82.

    PubMed  CAS  Google Scholar 

  249. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263–74.

    PubMed  CAS  Google Scholar 

  250. Davidson NJ, Leach MW, Fort MM et al. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J Exp Med 1996; 184: 241–51.

    PubMed  CAS  Google Scholar 

  251. Berg DJ, Davidson N, Kuhn R et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) Thl-like responses. J Clin Invest 1996; 98: 1010–20.

    PubMed  CAS  Google Scholar 

  252. Kullberg MC, Ward JM, Gorelick PL et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleu kin-10 (IL-10)-deficient mice through an IL-12-and gamma interferon-dependent mechanism. Infect Immun 1998; 66: 5157–66.

    PubMed  CAS  Google Scholar 

  253. Pasparakis M, Alexopoulou L, Episkopou V, Kollias G. Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med 1996; 184: 1397–411.

    PubMed  CAS  Google Scholar 

  254. Pasparakis M, Alexopoulou L, Grell M, Pfizenmaier K, Bluethmann H, Kollias G. Peyer’s patch organogenesis is intact yet formation of B lymphocyte follicles is defective in peripheral lymphoid organs of mice deficient for tumor necrosis factor and its 55-kDa receptor. Proc Nat Acad Sci USA 1997; 94: 6319–23.

    PubMed  CAS  Google Scholar 

  255. Kaneko H, Yamada H, Mizuno S et al. Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice. Lab Invest 1999; 79: 379–86.

    PubMed  CAS  Google Scholar 

  256. Dianda L, Hanby AM, Wright NA, Sebesteny A, Hayday AC, Owen MJ. T cell receptor-alpha beta-deficient mice fail to develop colitis in the absence of a microbial environment. Am J Pathol 1997; 150: 91–7.

    PubMed  CAS  Google Scholar 

  257. Mizoguchi E, Mizoguchi A, Bhan AK. Role of cytokines in the early stages of chronic colitis in TCR alpha-mutant mice. Lab Invest 1997; 76: 385–97.

    PubMed  CAS  Google Scholar 

  258. Mizoguchi A, Mizoguchi E, Bhan AK. The critical role of interleukin 4 but not interferon gamma in the pathogenesis of colitis in T-cell receptor alpha mutant mice. Gastroenterology 1999; 116: 320–6.

    PubMed  CAS  Google Scholar 

  259. De Winter H, Cheroutre H, Kronenberg M. Mucosal immunity and inflammation. II. The yin and yang of T cells in intestinal inflammation: pathogenic and protective roles in a mouse colitis model. Am J Physiol 1999; 276: G1317–21.

    PubMed  Google Scholar 

  260. Simpson SJ, Shah S, Comiskey M et al. T cell-mediated pathology in two models of experimental colitis depends predominantly on the interleukin 12/Signal transducer and activator of transcription (Stat)-4 pathway, but is not conditional on interferon gamma expression by T cells. J Exp Med 1998; 187: 1225–34.

    PubMed  CAS  Google Scholar 

  261. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 1996; 183: 2669–74.

    PubMed  CAS  Google Scholar 

  262. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999; 190: 995–1004.

    PubMed  CAS  Google Scholar 

  263. Fort MM, Leach MW, Rennick DM. A role for NK cells as regulators of CD4+ T cells in a transfer model of colitis. J Immunol 1998; 161: 3256–61.

    PubMed  CAS  Google Scholar 

  264. Ma Y, Ohmen JD, Li Z et al. A genome-wide search identifies potential new susceptibility loci for Crohn’s disease. Inflam Bowel Dis 1999; 5: 271–8.

    Article  CAS  Google Scholar 

  265. Powrie F, Leach MW, Mauze S, Caddie LB, Coffman RL. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 1993; 5: 1461–71.

    PubMed  CAS  Google Scholar 

  266. Powrie F, Leach MW, Mauze S, Menon S, Caddie LB, Coffman RL. Inhibition of Thl responses prevents inflamematory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1994; 1: 553–62.

    PubMed  CAS  Google Scholar 

  267. Ito H, Fathman CG CD45R Bhigh CD4+ T cells from IFN-gamma knockout mice do not induce wasting disease. J Autoimmunity 1997; 10: 455–9.

    CAS  Google Scholar 

  268. Rotter JI, Vadheim CM, Rimoin DL. Diabetes mellitus. In: King RA, Rotter JI, Motulsky AG, eds. The Genetic Basis of Common Diseases, 1st edn. New York: Oxford University Press, 1992: 413–81.

    Google Scholar 

  269. Hashimoto L, Habita C, Beressi JP et al. Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q. Nature 1994; 371: 161–4.

    PubMed  CAS  Google Scholar 

  270. Davies JL, Kawaguchi Y, Bennett S et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 1994; 371: 130–6.

    PubMed  CAS  Google Scholar 

  271. Field LL, Tobias R, Magnus T. A locus on chromosome 15q26 (IDDM3) produces susceptibility to insulin-dependent diabetes mellitus. Nature Genet 1994; 8: 189–94.

    PubMed  CAS  Google Scholar 

  272. Luo DF, Bui MM, Muir A, Maclaren NK, Thomson G, She JX. Affected sib-pair mapping of a novel susceptibility gene to insulin-dependent diabetes mellitus (IDDM8) on chromosome 6q25–q27. Am J Hum Genet 1995; 57: 911–19.

    PubMed  CAS  Google Scholar 

  273. Luo DF, Buzzetti R, Rotter JI et al. Confirmation of three susceptibility genes to insulin-dependent diabetes mellitus: IDDM4, IDDM5 and IDDM8. Hum Mol Genet 1996; 5: 693–8.

    PubMed  CAS  Google Scholar 

  274. Todd JA, Farrall M. Panning for gold: genome-wide scan ning for linkage in type 1 diabetes. Hum Mol Genet 1996; 5: 1443–8.

    PubMed  CAS  Google Scholar 

  275. Delepine M, Pociot F, Habita C et al. Evidence of a non-MHC susceptibility locus in type I diabetes linked to HLA on chromosome 6. Am J Hum Genet 1997; 60: 174–87.

    PubMed  CAS  Google Scholar 

  276. Julier C, Hyer RN, Davies J et al. Insulin-IGF2 region on chromosome l1p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature 1991; 354: 155–9.

    PubMed  CAS  Google Scholar 

  277. Bennett ST, Lucassen AM, Gough SCL et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nature Genet 1995; 9: 284–92.

    PubMed  CAS  Google Scholar 

  278. Lander ES. Mapping complex genetic traits in humans. In: Davies RE, editor. Genome Analysis. Oxford: IRL Press, 1988: 171–89.

    Google Scholar 

  279. Szpirer C, Riviere M, Szpirer J et al. Chromosomal assignment of human and rat hypertension candidate genes: Type 1 angiotensin II receptor genes and the SA gene. J Hypertens 1993; 11: 919–25.

    PubMed  CAS  Google Scholar 

  280. Lander ES, Botstein D. Mapping complex genetic traits in humans: new methods using a complete RFLP linkage map. 1986: 51; 49–62.

    Google Scholar 

  281. Risch N. Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet 1987; 40: 1–14.

    PubMed  CAS  Google Scholar 

  282. Calkins BM, Mendeloff AI. The epidemiology of idiopathic inflammatory bowel disease. In: Kirsner JB, Shorter RG, eds. Inflammatory Bowel Disease, 4th edn. Baltimore: Williams & Wilkins, 1995: 31–68.

    Google Scholar 

  283. Ohmen JD, Yang HY, Yamamoto KK et al. Susceptibility locus for inflammatory bowel disease on chromosome 16 has a role in Crohn’s disease, but not in ulcerative colitis. Hum Mol Genet 1996; 5: 1679–83.

    PubMed  CAS  Google Scholar 

  284. Parkes M, Satsangi J, Lathrop GM, Bell JI, Jewell DP. Susceptibility loci in inflammatory bowel disease. Lancet 1996; 348: 1588.

    PubMed  CAS  Google Scholar 

  285. Mirza MM, Lee J, Teare D et al. Evidence of linkage of the inflammatory bowel disease susceptibility locus on chromo some 16 (IBD1) to ulcerative colitis. J Med Genet 1998; 35: 218 21.

    Article  PubMed  Google Scholar 

  286. Cho JH, Nicolae DL, Gold LH et al. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes lp, 3q, and 4q: evidence for epistasis between lp and IBD1. Proc Natl Acad Sci USA 1998; 95: 7502 7.

    PubMed  Google Scholar 

  287. Cavanaugh JA, Callen DF, Wilson SR et al. Analysis of Australian Crohn’s disease pedigrees refines the localization for susceptibility to inflammatory bowel disease on chromo some 16. Ann Hum Genet 1998; 62: 291–8.

    PubMed  CAS  Google Scholar 

  288. Curran ME, Lau KF, Hampe J et al. Genetic analysis of inflammatory bowel disease in a large European cohort supports linkage to chromosomes 12 and 16. Gastroenterology 1998; 115: 1066–71.

    PubMed  CAS  Google Scholar 

  289. Brant SR, Fu Y, Fields CT et al. American families with Crohn’s disease have strong evidence for linkage to chromo some 16 but not chromosome 12. Gastroenterology 1998; 115: 1056–61.

    PubMed  CAS  Google Scholar 

  290. Hugot JP, Zouali H, Colombel JF et al. Fine mapping of the inflammatory bowel disease susceptibility locus 1 (IBD1) in the pericentromeric region of chromosome 16. Gastroenterology 1998; 114: A999.

    Google Scholar 

  291. Satsangi J, Parkes M, Louis E et al. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet 1996; 14: 199–202.

    PubMed  CAS  Google Scholar 

  292. Duerr RH, Barmada MM, Zhang L et al. Linkage and association between inflammatory bowel disease and a locus on chromosome 12. Am J Hum Genet 1998; 63: 95–100.

    PubMed  CAS  Google Scholar 

  293. Yang H, Ohmen JD, Ma Y, Targan SR, Fischel-Ghodsian N, Rotter JI. Additional evidence of linkage between Crohn’s disease and a putative locus on chromosome 12. Genet Med 1999; 1: 194–9.

    PubMed  CAS  Google Scholar 

  294. Yang H, Plevy SE, Taylor K et al. Linkage of Crohn’s disease to the major histocompatibility complex region is detected by multiple non-parametric analyses. Gut 1999; 44: 519–26.

    PubMed  CAS  Google Scholar 

  295. Hampe J, Schreiber S, Shaw SH et al. A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am J Hum Genet 1999; 64: 808–16.

    PubMed  CAS  Google Scholar 

  296. Rioux JD, Silverberg MS, Daly MJ et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 2000; 66: 1863–70.

    PubMed  CAS  Google Scholar 

  297. Duerr RH, Barmada MM, Zhang L, Pfutzer R, Weeks DE. High-density genome scan in Crohn disease shows confirmed linkage to chromosme 14q11–12. Am J Hum Genet 2000; 66: 1857–62.

    PubMed  CAS  Google Scholar 

  298. Cho JH, Fu Y, Kirschner BS, Hanauer SB. Confirmation of a susceptibility locus for Crohn’s disease on chromosome 16. Inflam Bowel Dis 1997; 3: 186–90.

    Google Scholar 

  299. Hugot JP, Thomas G. Genome-wide scanning in inflammatory bowel diseases. Dig Dis 1998; 16: 364–9.

    PubMed  CAS  Google Scholar 

  300. Vermeire S, Peeters M, Vlietinck R et al. No evidence for linkage on chromosomes 16-12-7 and 3 in the Belgian population may reflect genetic heterogeneity of inflamma tory bowel disease. Gastroenterology 1998; 114: A1109.

    Google Scholar 

  301. Rioux JD, Daly MJ, Green T et al. Absence of linkage between inflammatory bowel disease and selected loci on chromosomes 3, 7, 12, and 16. Gastroenterology 1998; 115: 1062–5.

    PubMed  CAS  Google Scholar 

  302. Parkes M, Satsangi J, Merriman A, Jewell DP. Precision mapping of chromosome 12 linkage in IBD: evidence for a haplotype association. Gastroenterology 1998; 114: A1058.

    Google Scholar 

  303. Hampe J, Hermann B, Bridger S, MacPherson AJ, Mathew CG, Schreiber S. The interferon-gamma gene as a positional and functional candidate gene for inflammatory bowel disease. Int J Colorect Dis 1998; 13: 260–3.

    CAS  Google Scholar 

  304. Simmons JD, Mullighan C, Welsh KI, Jewell DP. Vitamin D receptor gene polymorphism further evidence for an association with Crohn’s disease. Gastroenterology 1998; 114: A1086.

    Google Scholar 

  305. Broman KW, Murray JC, Shefield VC, White RL, Weber JL. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet 1998; 63: 861–9.

    PubMed  CAS  Google Scholar 

  306. Satsangi J, Welsh KI, Bunce M et al. Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflammatory bowel disease. Lancet 1996; 347: 1212–17.

    PubMed  CAS  Google Scholar 

  307. Hugot JP, Laurent-Puig P, Gower-Rousseau C et al. Linkage analyses of chromosome 6 loci, including HLA, in familial aggregations of Crohn disease. Am J Med Genet 1994; 52: 207–13.

    PubMed  CAS  Google Scholar 

  308. Naom I, Lee J, Ford D et al. Analysis of the contribution of HLA genes to genetic predisposition in inflammatory bowel disease. Am J Hum Genet 1996; 59: 226–33.

    PubMed  CAS  Google Scholar 

  309. Brant SR, Panhuysen C, Bailey-Wilson J et al. Crohn’s disease diagnosis before age 22 and with greater severity of disease identifies multiplex pedigrees at greater risk for locus IBD1. Gastroenterology 2000; 118: A708.

    Google Scholar 

  310. IBD Genetics Consortium. The international IBD consortium confirms linkage of Crohn’s disease to a locus on chromosome 16 (IBD1). Gastroenterology 2000; 118: A463.

    Google Scholar 

  311. Stokkers PC, Huibregtse K Jr, Leegwater AC, Reitsma PH, Tytgat GN, van Deventer SJ. Analysis of a positional candidate gene for inflammatory bowel disease: NRAMP2. Inflam Bowel Dis 2000; 6: 92–8.

    Article  CAS  Google Scholar 

  312. Hampe J, Shaw SH, Saiz R et al. Linkage of inflammatory bowel disease to human chromosome 6p. Am J Hum Genet 1999; 65: 1647–55.

    PubMed  CAS  Google Scholar 

  313. Vermeire S, Vlietinck R, Groenen P, Peeters M, Rutgeerts P. Replication of linkage on 14ql 1-12 in inflammatory bowel disease. Gastroenterology 2000; 118: A338.

    Google Scholar 

  314. Parkes M, Vyas P, Satsangi J, Jewell DP. Fine mapping the IBD linkage on chromosome 3. Gastroenterology 1999; 116: A792.

    Google Scholar 

  315. Zhang WJ, Koltun WA, Tilberg AF, Page MJ, Chorney MJ. Absence of GNAI2 codon 179 oncogene mutations in inflammatory bowel disease. Inflam Bowel Dis 2000; 6: 103–6.

    Article  CAS  Google Scholar 

  316. Pokorny RM, Hofmeister A, Galandiuk S, Dietz AB, Cohen ND, Neibergs HL. Crohn’s disease and ulcerative colitis are associated with the DNA repair gene MLH1. Ann Surg 1997; 225: 718–25.

    PubMed  CAS  Google Scholar 

  317. Kyo K, Parkes M, Takei Y et al. Association of ulcerative colitis with rare VNTR alleles of the human intestinal mucin gene, MUC3. Hum Mol Genet 1999; 8: 307–11.

    PubMed  CAS  Google Scholar 

  318. Podolsky DK, Fournier DA. Alterations in mucosal content of colonic glycoconjugates in inflammatory bowel disease defined by monoclonal antibodies. Gastroenterology 1988; 95: 379–87.

    PubMed  CAS  Google Scholar 

  319. Cho JH, Nicolae DL, Ramos R et al. Linkage and linkage disequilibrium in chromosome band Ip36 in American Chaldeans with inflammatory bowel disease. Hum Mol Genet 2000; 9: 1425–32.

    PubMed  CAS  Google Scholar 

  320. MHC Sequencing Consortium. Complete sequence and gene map of a human major histocompatibility complex. Nature 1999; 401: 921–3.

    Google Scholar 

  321. Stokkers PC, Reitsma PH, Tytgat GN, van Deventer SJ. HLA-DR and-DQ phenotypes in inflammatory bowel disease: a meta-analysis. Gut 1999; 45: 395–401.

    Article  PubMed  CAS  Google Scholar 

  322. Danze PM, Colombel JF, Jacquot S et al. Association of HLA class II genes with susceptibility to Crohn’s disease. Gut 1996; 39: 69–72.

    PubMed  CAS  Google Scholar 

  323. Reinshagen M, Loeliger C, Kuehnl P et al HLA class II gene frequencies in Crohn’s disease: a population based analysis in Germany. Gut 1996; 38: 538–42.

    PubMed  CAS  Google Scholar 

  324. Roussomoustakaki M, Satsangi J, Welsh K et al. Genetic markers may predict disease behavior in patients with ulcerative colitis. Gastroenterology 1997; 112: 1845–53.

    PubMed  CAS  Google Scholar 

  325. Bouma G, Crusius JB, Garcia-Gonzalez MA et al. Genetic markers in clinically well defined patients with ulcerative colitis (UC). Clin Exp Immunol 1999; 115: 294–300.

    PubMed  CAS  Google Scholar 

  326. Trachtenberg EA, Yang H, Hayes E et al. HLA class II haplotype associations with inflammatory bowel disease in Jewish (Ashkenazi) and non-Jewish Caucasian populations. Hum Immunol 2000; 61: 326–33.

    PubMed  CAS  Google Scholar 

  327. Asakura H, Tsuchiya M, Aiso S et al. Association of the human lymphocyte-DR2 antigen with Japanese ulcerative colitis. Gastroenterology 1982; 82: 413–18.

    PubMed  CAS  Google Scholar 

  328. Futami S, Aoyama N, Honsako Y et al. HLA-DRB1*1502 allele, subtype of DR15, is associated with susceptibility to ulcerative colitis and its progression. Dig Dis Sci 1995; 40: 814–18.

    PubMed  CAS  Google Scholar 

  329. Duerr RH, Neigut DA. Molecularly defined HLA-DR2 alleles in ulcerative colitis and an antineutrophil cytoplasmic antibody-positive subgroup. Gastroenterology 1995; 108: 423–7.

    PubMed  CAS  Google Scholar 

  330. Cariappa A, Sands B, Forcione D, Finkelstein D, Podolsky DK, Pillai S. Analysis of MHC class II DP, DQ and DR alleles in Crohn’s disease. Gut 1998; 43: 210–15.

    Article  PubMed  CAS  Google Scholar 

  331. Nakajima A, Matsuhashi N, Kodama T, Yazaki Y, Takazoe M, Kimura A. HLA-linked susceptibility and resistance genes in Crohn’s disease. Gastroenterology 1995; 109: 1462–7.

    PubMed  CAS  Google Scholar 

  332. Forcione DG, Sands B, Isselbacher KJ, Rustgi A, Podolsky DK, Pillai S. An increased risk of Crohn’s disease in individuals who inherit the HLA class II DRB3*0301 allele. Proc Natl Acad Sci USA 1996; 93: 5094–8.

    PubMed  CAS  Google Scholar 

  333. Bouma G, Oudkerk Pool M, Crusius JB et al. Evidence for genetic heterogeneity in inflammatory bowel disease (IBD); HLA genes in the predisposition to suffer from ulcerative colitis (UC) and Crohn’s disease (CD). Clin Exp Immunol 1997; 109: 175–9.

    PubMed  CAS  Google Scholar 

  334. Orchard TR, Thiyagaraja S, Welsh KI, Wordsworth BP, Hill Gaston JS, Jewell DP. Clinical phenotype is related to HLA genotype in the peripheral arthropathies of inflammatory bowel disease. Gastroenterology 2000; 118: 274–8.

    PubMed  CAS  Google Scholar 

  335. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999; 284: 770–6.

    PubMed  CAS  Google Scholar 

  336. Milner LA, Bigas A. Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood 1999; 93: 2431–48.

    PubMed  CAS  Google Scholar 

  337. Skipper M, Lewis J. Getting to the guts of enteroendocrine differentiation. Nat Genet 2000; 24: 3–4.

    PubMed  CAS  Google Scholar 

  338. Robey E. Regulation of T cell fate by Notch. Annu Rev Immunol 1999; 17: 283–95.

    PubMed  CAS  Google Scholar 

  339. Taylor KD, Yang H, Hang TD et al. Linkage disequilibrium mapping identifies a class III major histocompatibility complex (MHC) susceptibility haplotype to Crohn’s disease in Ashkenazi Jews. Am J Hum Genet 1999; 65: A102.

    Google Scholar 

  340. Van Deventer SJ. Tumour necrosis factor and Crohn’s disease. Gut 1997; 40: 443–8.

    PubMed  Google Scholar 

  341. Targan SR, Hanauer SB, van Deventer SJ et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med 1997; 337: 1029–35.

    PubMed  CAS  Google Scholar 

  342. Bazzoni F, Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med 1996; 334: 1717–25.

    PubMed  CAS  Google Scholar 

  343. Kroeger KM, Carville KS, Abraham LJ. The —308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol Immunol 199; 34: 391–9.

    Google Scholar 

  344. Louis E, Franchimont D, Piron A et al. Tumour necrosis factor (TNF) gene polymorphism influences TNF-alpha production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clin Exp Immunol 1998; 113: 401–6.

    PubMed  CAS  Google Scholar 

  345. McGuire W, Hill AV, Allsopp CE, Greenwood BM, Kwiatkowski D. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature 1994; 371: 508–10.

    PubMed  CAS  Google Scholar 

  346. McGuire W, Knight JC, Hill AV, Allsopp CE, Greenwood BM, Kwiatkowski D. Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles. J Infect Dis 1999; 179: 287–90.

    PubMed  CAS  Google Scholar 

  347. Wilson AG, di Giovine FS, Duff GW. Genetics of tumour necrosis factor-alpha in autoimmune, infectious, and neoplastic diseases. J Inflammation 1995; 45: 1–12.

    CAS  Google Scholar 

  348. Nadel S, Newport MJ, Booy R, Levin M. Variation in the tumor necrosis factor-alpha gene promoter region may be associated with death from meningococcal disease. J Infect Dis 1996; 174: 878–80.

    PubMed  CAS  Google Scholar 

  349. Hohler T, Kruger A, Gerken G, Schneider PM, Meyer zum Buschenfelde KH, Rittner C. Tumor necrosis factor alpha promoter polymorphism at position —238 is associated with chronic active hepatitis C infection. J Med Virol 1998; 54: 173–7.

    PubMed  CAS  Google Scholar 

  350. Kaijzel EL, van Krugten MV, Brinkman BM et al. Functional analysis of a human tumor necrosis factor alpha (TNF-alpha) promoter polymorphism related to joint damage in rheumatoid arthritis. Mol Med 1998; 4: 724–33.

    PubMed  CAS  Google Scholar 

  351. Nedospasov SA, Udalova IA, Kuprash DV, Turetskaya RL. DNA sequence polymorphism at the human tumor necrosis factor (TNF) locus. Numerous TNF/lymphotoxin alleles tagged by two closely linked microsatellites in the upstream region of the lymphotoxin (TNF-beta) gene. J Immunol 1991; 147: 1053–9.

    PubMed  CAS  Google Scholar 

  352. Udalova IA, Nedospasov SA, Webb GC, Chaplin DD, Turetskaya RL. Highly informative typing of the human TNF locus using six adjacent polymorphic markers. Genomics 1993; 16: 180–6.

    PubMed  CAS  Google Scholar 

  353. Iris FJ, Bougueleret L, Prieur S et al. Dense Alu clustering and a potential new member of the NF kappa B family within a 90 kilobase HLA class III segment. Nat Genet 1993; 3: 137–45.

    PubMed  CAS  Google Scholar 

  354. Plevy SE, Targan SR, Yang H, Fernandez D, Rotter JI, Toyoda H. Tumor necrosis factor microsatellites define a Crohn’s disease-associated haplotype on chromosome 6. Gastroenterology 1996; 110: 1053–60.

    PubMed  CAS  Google Scholar 

  355. Kinouchi Y, Simmon J, Van Heel D, Jewell DP. Polymorphism at position —1031 in the TNF gene confers susceptibility to Crohn’s disease. Gastroenterology 2000; 118: A334.

    Google Scholar 

  356. Bonen DK, Ramos R, Lee S et al. Characterization of genomic and functional variation throughout the TNF gene in patients with IBD. Gastroenterology 2000; 118: A330–1.

    Article  Google Scholar 

  357. Plevy SE, Taylor K, DeWoody KL, Schaible YF, Shealy D, Targan SR. Tumor necrosis factor (TNF) microsatellite haplotypes and perinuclear anti-neutrophil cytoplasmic antibody (pANCA) identify Crohn’s disease (CD) patients with poor clinical responses to anti-TNF monoclonal antibody. Gastroenterology 1997; 112: A1062.

    Google Scholar 

  358. Dinarello CA, Wolff SM. The role of interleukin-1 in disease. N Engl J Med 1993; 328: 106–13.

    PubMed  CAS  Google Scholar 

  359. Casini-Raggi V, Kam L, Chong YJ, Fiocchi C, Pizarro TT, Cominelli F. Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation. J Immunol 1995; 154: 2434–40.

    PubMed  CAS  Google Scholar 

  360. Andus T, Daig R, Vogl D et al. Imbalance of the interleukin 1 system in colonic mucosa association with intestinal inflammation and interleukin 1 receptor antagonist genotype 2. Gut 1997; 41: 651–7.

    Article  PubMed  CAS  Google Scholar 

  361. Ferretti M, Casini-Raggi V, Pizarro TT, Eisenberg SP, Nast CC, Cominelli F. Neutralization of endogenous IL-1 receptor antagonist exacerbates and prolongs inflammation in rabbit immune colitis. J Clin Invest 1994; 94: 449–53.

    PubMed  CAS  Google Scholar 

  362. Tountas NA, Casini-Raggi V, Yang H et al. Functional and ethnic association of allelc 2 of the interleukin-1 receptor antagonist gene in ulcerative colitis. Gastroenterology 1999; 117: 806–13.

    PubMed  CAS  Google Scholar 

  363. Dinarello CA. The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N Engl J Med 2000; 343: 732–4.

    PubMed  CAS  Google Scholar 

  364. Mansfield JC, Holden H, Tarlow JK et al. Novel genetic association between ulcerative colitis and the anti-inflammatory cytokine interleukin-1 receptor antagonist. Gastroenterology 1994; 106: 637–42.

    PubMed  CAS  Google Scholar 

  365. Louis E, Satsangi J, Roussomoustakaki M et al. Cytokine gene polymorphisms in inflammatory bowel disease. Gut 1996; 39: 705–10.

    PubMed  CAS  Google Scholar 

  366. Heresbach D, Alizadeh M, Dabadie A et al. Significance of interleukin-1 beta and interleukin-1 receptor antagonist genetic polymorphism in inflammatory bowel diseases. Am J Gastroenterol 1997; 92: 1164–9.

    PubMed  CAS  Google Scholar 

  367. Stokkers PC, van Aken BE, Basoski N, Reitsma PH, Tytgat GN, van Deventer SJ. Five genetic markers in the interleukin 1 family in relation to inflammatory bowel disease. Gut 1998; 43: 33–9.

    Article  PubMed  CAS  Google Scholar 

  368. Nemetz A, Kope A, Molnar T et al. Significant differences in the interleukin-1 beta and interleukin-1 receptor antagonist gene polymorphisms in a Hungarian population with inflammatory bowel disease. Scand J Gastroenterol 1999; 34: 175–9.

    PubMed  CAS  Google Scholar 

  369. Nemetz A, Nosti-Escanilla MP, Molnar T et al. IL1B gene polymorphisms influence the course and severity of inflammatory bowel disease. Immunogenetics 1999; 49: 527–31.

    PubMed  CAS  Google Scholar 

  370. Etzioni A. Adhesion molecules — their role in health and disease. Pediatr Res 1996; 39: 191–8.

    PubMed  CAS  Google Scholar 

  371. Vainer B. Role of cell adhesion molecules in inflammatory bowel diseases. Scand J Gastroenterol 1997; 32: 401–10.

    PubMed  CAS  Google Scholar 

  372. Nakamura S, Ohtani H, Watanabe Y et al. In situ expression of the cell adhesion molecules in inflammatory bowel disease. Evidence of immunologic activation of vascular endothelial cells. Lab Invest 1993; 69: 77–85.

    PubMed  CAS  Google Scholar 

  373. Vainer B, Nielsen OH. Changed colonic profile of P-selectin, platelet-endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), ICAM-2, and ICAM-3 in inflammatory bowel disease. Clin Exp Immunol 2000; 121: 242–7.

    PubMed  CAS  Google Scholar 

  374. Patel RT, Pall AA, Adu D, Keighley MR. Circulating soluble adhesion molecules in inflammatory bowel disease. Eur J Gastroenterol Hepatol 1995; 7: 1037–41.

    PubMed  CAS  Google Scholar 

  375. Wong PY, Yue G, Yin K et al. Antibodies to intercellular adhesion molecule-1 ameliorate the inflammatory response in acetic acid-induced inflammatory bowel disease. J Pharmacol Exp Ther 1995; 274: 475–80.

    PubMed  CAS  Google Scholar 

  376. Altare F, Jouanguy E, Lamhamedi-Cherradi S et al. A causative relationship between mutant IFNGR1 alleles and impaired cellular response to IFNG in a compound heterozygous child. Am J Hum Genet 1998; 62: 723–6.

    PubMed  CAS  Google Scholar 

  377. Jouanguy E, Dupuis S, Pallier A et al. In a novel form of IFN-gamma receptor 1 deficiency, cell surface receptors fail to bind IFN-gamma. J Clin Invest 2000; 105: 1429–36.

    PubMed  CAS  Google Scholar 

  378. Newport MJ, Huxley CM, Huston S et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 1996; 335: 1941–9.

    PubMed  CAS  Google Scholar 

  379. Jouanguy E, Lamhamedi-Cherradi S, Altare F et al. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guerin infection and a sibling with clinical tuberculosis. J Clin Invest 1997; 100: 2658–64.

    PubMed  CAS  Google Scholar 

  380. Jouanguy E, Lamhamedi-Cherradi S, Lammas D et al. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet 1999; 21: 370–8.

    PubMed  CAS  Google Scholar 

  381. Fleshner PR, Taylor KD, Yang H et al. Chronic pouchitis after ileal pouch anal anastomosis for ulcerative colitis (UC) is associated with the interferon gamma receptor alpha gene independent of perinuclear antineutrophil cytoplasmic antibody (pANCA) level. Gastroenterology 2000; 118: A338.

    Google Scholar 

  382. Mahmud N, Molloy A, McPartlin J et al. Increased prevalence of methylenetetrahydrofolate reductase C677T variant in patients with inflammatory bowel disease, and its clinical implications. Gut 1999; 45: 389–94.

    Article  PubMed  CAS  Google Scholar 

  383. Helio T, Wartiovaara U, Halme L et al. Arg506Gln factor V mutation and Val34Leu factor XIII polymorphism in Finnish patients with inflammatory bowel disease. Scand J Gastroenterol 1999; 34: 170–4.

    PubMed  CAS  Google Scholar 

  384. Vecchi M, Sacchi E, Saibeni S et al. Inflammatory bowel diseases are not associated with major hereditary conditions predisposing to thrombosis. Dig Dis Sci 2000; 45: 1465–9.

    PubMed  CAS  Google Scholar 

  385. Govoni G, Gros P. Macrophage NRAMP1 and its role in resistance to microbial infections. Inflam Res 1998; 47: 277–84.

    CAS  Google Scholar 

  386. Bellamy R. Identifying genetic susceptibility factors for tuberculosis in Africans: a combined approach using a candidate gene study and a genome-wide screen. Clin Sci 2000; 98: 245–50.

    PubMed  CAS  Google Scholar 

  387. Bellamy R. The natural resistance-associated macrophage protein and susceptibility to intracellular pathogens. Microbes Infect 1999; 1: 23–7.

    PubMed  CAS  Google Scholar 

  388. Hofmeister A, Neibergs HL, Pokorny RM, Galandiuk S. The natural resistance-associated macrophage protein gene is associated with Crohn’s disease. Surgery 1997; 122: 173–9.

    PubMed  CAS  Google Scholar 

  389. Farrell RJ, Murphy A, Long A et al. High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology 2000; 118: 279–88.

    PubMed  CAS  Google Scholar 

  390. Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdrla, spontaneously develop colitis. J Immunol 1998; 161: 5733–44.

    PubMed  CAS  Google Scholar 

  391. Dubinsky MC, Lamothe S, Yang HY et al Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 2000; 118: 705–13.

    PubMed  CAS  Google Scholar 

  392. Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411: 599–603.

    PubMed  CAS  Google Scholar 

  393. McKay DM. Intestinal inflammation and the gut microflora. Can J Gastroenterol 1999; 13: 509–16.

    PubMed  CAS  Google Scholar 

  394. Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: inhibition of NF-kB activity through induction of lkB synthesis. Science 1995; 270: 286–90.

    PubMed  CAS  Google Scholar 

  395. Wahl C, Liptay S, Adler G, Schmid RM. Sulfasalazine: a potent and specific inhibitor of nuclear factor kB. J Clin Invest 1998; 101: 1163–74.

    Article  PubMed  CAS  Google Scholar 

  396. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411: 603–6.

    PubMed  CAS  Google Scholar 

  397. Rioux JD, Daly MJ, Silverberg MS et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29: 223–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Taylor, K.D., Rotter, J.I., Huiying, Y. (2003). Genetics of inflammatory bowel disease. In: Targan, S.R., Shanahan, F., Karp, L.C. (eds) Inflammatory Bowel Disease: From Bench to Bedside. Springer, Boston, MA. https://doi.org/10.1007/0-387-25808-6_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-25808-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25807-2

  • Online ISBN: 978-0-387-25808-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics