Skip to main content

Targeted therapies for inflammatory bowel disease

  • Chapter
  • 1270 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elson CO, Cong Y, Brandwein S et al. Experimental models to study molecular mechanisms underlying intestinal in flammation. Ann NY Acad Sci 1998; 859: 85–95.

    Article  PubMed  CAS  Google Scholar 

  2. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996; 87: 2095–147.

    PubMed  CAS  Google Scholar 

  3. Beutler BA. The role of tumor necrosis factor in health and disease. J Rheumatol 1999; 26: 16–21.

    Google Scholar 

  4. Dinarello CA. Interleukin-1 beta, interleukin-18, and the interleukin-1 beta converting enzyme. Ann NY Acad Sci 1998; 856: 1–11.

    Article  PubMed  CAS  Google Scholar 

  5. Fantuzzi G, Dinarello CA. Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1). J Clin Immunol 1999; 19: 1–11.

    Article  PubMed  CAS  Google Scholar 

  6. Dinarello CA. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int Rev Immunol 1998; 16: 457–99.

    PubMed  CAS  Google Scholar 

  7. Thomassen E, Bird TA, Renshaw BR, Kennedy MK, Sims JE. Binding of interleukin-18 to the interleukin-1 receptor homologous receptor IL-1Rrp1 leads to activation of signaling pathways similar to those used by interleukin-1. J Interferon Cytokine Res 1998; 18: 1077–88.

    Article  PubMed  CAS  Google Scholar 

  8. Brynskov J, Tvede N, Andersen CB, Vilien M. Increased concentrations of interleukin 1beta, interleukin-2, and soluble interleukin-2 receptors in endoscopical mucosal biopsy specimens with active inflammatory bowel disease. Gut 1992; 33: 55–8.

    PubMed  CAS  Google Scholar 

  9. Mahida YR, Wu K, Jewell DP. Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis or Crohn’s disease. Gut 1989; 30: 835–8.

    PubMed  CAS  Google Scholar 

  10. Casini-Raggi V, Kam L, Chong YJ, Fiocchi C, Pizarro TT, Cominelli F. Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation. J Immunol 1995; 154: 2434–40.

    PubMed  CAS  Google Scholar 

  11. Stokkers PC, van Aken BE, Basoski N, Reitsma PH, Tytgat GN, van Deventer SJ. Five genetic markers in the inter leukin 1 family in relation to inflammatory bowel disease. Gut 1998; 43: 33–9.

    Article  PubMed  CAS  Google Scholar 

  12. Andus T, Daig R, Vogl D et al. Imbalance of the interleukin 1 system in colonic mucosa — association with intestinal inflammation and interleukin 1 receptor agonist genotype 2. Gut 1997; 41: 651–7.

    Article  PubMed  CAS  Google Scholar 

  13. Cominelli F, Nast CC, Duchini A, Lee M. Recombinant interleukin-1 receptor antagonist blocks the proinflammatory activity of endogenous interleukin-1 in rabbit immune colitis. Gastroenterology 1992; 103: 65–71.

    PubMed  CAS  Google Scholar 

  14. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 1999; 17: 331–67.

    Article  PubMed  CAS  Google Scholar 

  15. Bielekova B, Lincoln A, McFarland H, Martin R. Therapeutic potential of phosphodiesterase-4 and-3 inhibitors in Th1-mediated autoimmune diseases. J Immunol 2000; 164: 1117–24.

    PubMed  CAS  Google Scholar 

  16. Corral LG, Kaplan G. Immunomodulation by thalidomide and thalidomide analogues. Ann Rheum Dis 1999; 58: 1107–13.

    Google Scholar 

  17. Muller GW, Shire MG, Wong LM et al. Thalidomide analogs and PDE4 inhibition. Bioorg Med Chem Lett 1998; 8: 2669–74.

    Article  PubMed  CAS  Google Scholar 

  18. Reimund JM, Dumont S, Muller CD et al. In vitro effects of oxpentifylline on inflammatory cytokine release in patients with inflammatory bowel disease. Gut 1997; 40: 475–80.

    PubMed  CAS  Google Scholar 

  19. Black RA, Rauch CT, Kozlosky CJ et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997; 385: 729–33.

    Article  PubMed  CAS  Google Scholar 

  20. Killar L, White J, Black R, Peschon J. Adamalysins. A family of metzincins including TNF-alpha converting enzyme (TACE). Ann NY Acad Sci 1999; 878: 442–52.

    Article  PubMed  CAS  Google Scholar 

  21. Moss ML, Jin SL, Milla ME et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha [Published erratum appears in Nature 1997; 386: 738]. Nature 1997; 385: 733–6.

    Article  PubMed  CAS  Google Scholar 

  22. Moss ML, Jin SL, Becherer JD et al. Structural features and biochemical properties of TNF-alpha converting enzyme (TACE). J Neuroimmunol 1997; 72: 127–9.

    Article  PubMed  CAS  Google Scholar 

  23. Tartaglia LA, Rothe M, Hu YF, Goeddel DV. Tumor necrosis factor’s cytotoxic activity is signaled by the p55 TNF receptor. Cell 1993; 73: 213–16.

    Article  PubMed  CAS  Google Scholar 

  24. Tartaglia LA, Goeddel DV, Reynolds C et al. Stimulation of human T-cell proliferation by specific activation of the 75-kDa tumor necrosis factor receptor. J Immunol 1993; 151: 4637–41.

    PubMed  CAS  Google Scholar 

  25. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death [See comments]. Science 1996; 274: 782–4.

    Article  PubMed  CAS  Google Scholar 

  26. Levi M, Ten Cate H, Bauer KA et al. Inhibition of endotox-in-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees. J Clin Invest 1994; 93: 114–20.

    PubMed  CAS  Google Scholar 

  27. Bauditz J, Haemling J, Ortner M, Lochs H, Raedler A, Schreiber S. Treatment with tumour necrosis factor inhibitor oxpentifylline does not improve corticosteroid dependent chronic active Crohn’s disease [See comments]. Gut 1997; 40: 470–4.

    PubMed  CAS  Google Scholar 

  28. MacKenzie SJ, Houslay MD. Action of rolipram on specific PDE4 cAMP phosphodiesterase isoforms and on the phosphorylation of cAMP-response-element-binding protein (CREB) and p38 mitogen-activated protein (MAP) kinase in U937 monocytic cells. Biochem J 2000; 347: 571–8.

    Article  PubMed  CAS  Google Scholar 

  29. Zou LP, Deretzi G, Pelidou SH et al. Rolipram suppresses experimental autoimmune neuritis and prevents relapses in Lewis rats. Neuropharmacology 2000; 39: 324–33.

    Article  PubMed  CAS  Google Scholar 

  30. Hartmann G, Bidlingmaier C, Siegmund B et al. Specific type IV phosphodiesterase inhibitor rolipram mitigates experimental colitis in mice. J Pharmacol Exp Ther 2000; 292: 22–30.

    PubMed  CAS  Google Scholar 

  31. Singhal S, Mehta J, Desikan R et al. Antitumor activity of thalidomide in refractory multiple myeloma [See comments] [Published erratum appears in N Engl J Med 2000; 342: 364]. N Engl J Med 1999; 341: 1565–71.

    Article  PubMed  CAS  Google Scholar 

  32. Postema PT, den Haan P, van Hagen PM, van Blankenstein M. Treatment of colitis in Behcet’s disease with thalidomide. Eur J Gastroenterol Hepatol 1996; 8: 929–31.

    PubMed  CAS  Google Scholar 

  33. Bekker LG, Haslett P, Maartens G, Steyn L, Kaplan G. Thalidomide-induced antigen-specific immune stimulation in patients with human immunodeficiency virus type 1 and tuberculosis. J Infect Dis 2000; 181: 954–65.

    Article  PubMed  CAS  Google Scholar 

  34. Tramontana JM, Utaipat U, Molloy A et al. Thalidomide treatment reduces tumor necrosis factor alpha production and enhances weight gain in patients with pulmonary tuberculosis. Mol Med 1995; 1: 384–97.

    PubMed  CAS  Google Scholar 

  35. Sato EI, Assis LS, Lourenzi VP, Andrade LE. Long-term thalidomide use in refractory cutaneous lesions of systemic lupus erythematosus. Rev Assoc Med Brasil 1998; 44: 289–93.

    CAS  Google Scholar 

  36. Jacobson JM, Spritzler J, Fox L et al. Thalidomide for the treatment of esophageal aphthous ulcers in patients with human immunodeficiency virus infection. National Institute of Allergy and Infectious Disease AIDS Clinical Trials Group. Immunol Today 1999; 20: 538–40.

    Article  Google Scholar 

  37. Vasiliauskas EA, Kam LY, Abreu-Martin MT et al. An open-label pilot study of low-dose thalidomide in chronically active, steroid-dependent Crohn’s disease. Gastroenterology 1999; 117: 1278–87.

    Article  PubMed  CAS  Google Scholar 

  38. Ehrenpreis ED, Kane SV, Cohen LB, Cohen RD, Hanauer SB. Thalidomide therapy for patients with refractory Crohn’s disease: an open-label trial. Gastroenterology 1999; 117: 1271–7.

    Article  PubMed  CAS  Google Scholar 

  39. Haslett PA, Klausner JD, Makonkawkeyoon S et al. Thalidomide stimulates T cell responses and interleukin 12 production in HIV-infected patients. AIDS Res Hum Retroviruses 1999; 15: 1169–79.

    Article  PubMed  CAS  Google Scholar 

  40. Verbon A, Juffermans NP, Speelman P et al. A single oral dose of thalidomide enhances the capacity of lymphocytes to secrete gamma interferon in healthy humans. Surg Endosc 2000; 14: 721–5.

    Article  Google Scholar 

  41. Juffermans NP, Verbon A, Olszyna DP, van Deventer SJ, Speelman P, van Der Poll T. Thalidomide suppresses up-regulation of human immunodeficiency virus coreceptors CXCR4 and CCR5 on CD4+ T cells in humans. J Infect Dis 2000; 181: 2067–70.

    Article  PubMed  Google Scholar 

  42. Corral LG, Haslett PA, Muller GW et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol 1999; 163: 380–6.

    PubMed  CAS  Google Scholar 

  43. Sykes AP, Bhogal R, Brampton C et al. The effect of an inhibitor of matrix metalloproteinases on colonic inflammation in a trinitrobenzenesulphonic acid rat model of inflammatory bowel disease. Aliment Pharmacol Ther 1999; 13: 1535–42.

    Article  PubMed  CAS  Google Scholar 

  44. Williams LM, Gibbons DL, Gearing A, Maini RN, Feldmann M, Brennan FM. Paradoxical effects of a synthetic metalloproteinase inhibitor that blocks both p55 and p75 TNF receptor shedding and TNF alpha processing in RA synovial membrane cell cultures. J Clin Invest 1996; 97: 2833–41.

    PubMed  CAS  Google Scholar 

  45. Dekkers PE, Lauw FN, ten Hove T et al. The effect of a metalloproteinase inhibitor (GI5402) on tumor necrosis factor-alpha (TNF-alpha) and TNF-alpha receptors during human endotoxemia. Blood 1999; 94: 2252–8.

    PubMed  CAS  Google Scholar 

  46. Dekkers PE, ten Hove T, Lauw FN et al. The metalloproteinase inhibitor GI5402 inhibits endotoxin-induced soluble CD27 and CD 16 release in healthy humans. Infect Immun 2000; 68: 3036–9.

    Article  PubMed  CAS  Google Scholar 

  47. Tracey KJ, Abraham E. From mouse to man: or what have we learned about cytokine-based anti-inflammatory therapies? Shock 1999; 11: 224–5.

    Article  PubMed  CAS  Google Scholar 

  48. Abraham E. Why immunomodulatory therapies have not worked in sepsis. Nursing 1999; 29: 59–63; quiz 64.

    Google Scholar 

  49. Knight DM, Trinh H, Le J et al. Construction and initial characterization of a mouse human chimeric anti-TNF antibody. Cytokine 1995; 7: 15–25.

    Article  Google Scholar 

  50. Holliger P, Bohlen H. Engineering antibodies for the clinic. Mol Immunol 1993; 30: 1443–53.

    Article  Google Scholar 

  51. Kempeni J. Preliminary results of early clinical trials with the fully human anti-TNFalpha monoclonal antibody D2E7. Cancer Metastasis Rev 1999; 18: 411–19.

    Article  Google Scholar 

  52. Bendele AM, McComb J, Gould T et al. Combination benefit of PEGylated soluble tumor necrosis factor receptor type I (PEG sTNF-RI) and dexamcthasone or indomcthacin in adjuvant arthritic rats. Clin Exp Rheumatol 1999; 17: 553–60.

    PubMed  CAS  Google Scholar 

  53. Edwards CK, 3rd. PEGylated recombinant human soluble tumour necrosis factor receptor type I (r-Hu-sTNF-RI): novel high affinity TNF receptor designed for chronic inflammatory diseases. J Rheumatol 2000; 27: 601–9.

    PubMed  Google Scholar 

  54. Epstein WV. Treatment of rheumatoid arthritis with a tumor necrosis factor receptor-Fc fusion protein [Letter; comment]. J Immunol 1998; 160: 4098–103.

    Google Scholar 

  55. Stack WA, Mann SD, Roy AJ et al. Randomised controlled trial of CDP571 antibody to tumour necrosis factor-alpha in Crohn’s disease [See comments]. Lancet 1997; 349: 521–4.

    Article  PubMed  CAS  Google Scholar 

  56. Sandborn WJ, Feagan BG, Hanauer SB et al. An engineered human antibody to TNF (CDP571) for active Crohn’s disease: a randomized double-blind placebo-controlled trial. Gastroenterology 2001; 120: 1330–8.

    Article  PubMed  CAS  Google Scholar 

  57. Feagan BG, Sandborn WJ, Baker JP et al. A randomized, double-blind, placebo-controlled, multi-center trial of the engineered human antibody to TNF (CDP571) for steroid sparing and maintenance of remission in patients with steroid-dependent Crohn’s disease. Gastroenterology 2000; 118: A655.

    Article  Google Scholar 

  58. Derkx B, Taminiau J, Radema S et al. Tumour-necrosis-factor antibody treatment in Crohn’s disease [Letter] [See comments]. Lancet 1993; 342: 173–4.

    Article  PubMed  CAS  Google Scholar 

  59. Van Dullemen HM, Van Deventer SJH, Hommes DW et al. Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology 1995; 109: 129–35.

    Article  PubMed  Google Scholar 

  60. Targan SR, Hanauer SB, Vandeventer SJH et al. A short-term study of chimeric monoclonal antibody Ca2 to tumor necrosis factor alpha for Crohns-disease. N Engl J Med 1997; 337: 1029–35.

    Article  PubMed  CAS  Google Scholar 

  61. Rutgeerts P, D’Haens G, Targan S et al. Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology 1999; 117: 761–9.

    Article  PubMed  CAS  Google Scholar 

  62. D’Haens G, Van Deventer S, Van Hogezand R et al. Endoscopic and histological healing with infliximab anti-tumor necrosis factor antibodies in Crohn’s disease: a European multicenter trial. Gastroenterology 1999; 116: 1029–34.

    Article  PubMed  CAS  Google Scholar 

  63. Present DH, Rutgeerts P, Targan S et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 1999; 340: 1398–405.

    Article  PubMed  CAS  Google Scholar 

  64. Ricart E, Panaccione R, Loftus EV, Tremaine WJ, Sandborn WJ. Successful management of Crohn’s disease of the ileoanal pouch with infliximab. Gastroenterology 1999; 117: 429–32.

    Article  PubMed  CAS  Google Scholar 

  65. Brandt J, Haibel H, Comely D et al. Successful treatment of active ankylosing spondylitis with the anti-tumor necrosis factor alpha monoclonal antibody infliximab (In process citation). Arthritis Rheum 2000; 43: 1346–52.

    Article  PubMed  CAS  Google Scholar 

  66. Van der Linde K, Meijssen MA, Van Bodegraven AA et al. Infliximab for treatment of perineal metastatic crohn’s disease. Gastroenterology 2000; 118: A588.

    Article  Google Scholar 

  67. Sands BE, Tremaine WJ, Sandborn WJ et al. Infliximab in the treatment of severe, steroid-refractory ulcerative colitis: a pilot study. Inflamm Bowel Dis 2001; 7: 83–8.

    Article  PubMed  CAS  Google Scholar 

  68. Keane J, Gershon S, Wise RP et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 2001; 345: 1098–104.

    Article  PubMed  CAS  Google Scholar 

  69. Schrciber S, Fedorak RN, Nielsen OH et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 2000; 119: 1461–72.

    Article  Google Scholar 

  70. Fedorak RN, Gangl A, Elson CO et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 2000; 119: 1473–82.

    Article  PubMed  CAS  Google Scholar 

  71. Lauw FN, Pajkrt D, Hack CE, Kurimoto M, van Deventer SJ, van Der Poll T. Proinflammatory effects of IL-10 during human endotoxemia. J Infect Dis 2000; 182: 888–94.

    Article  Google Scholar 

  72. Schreiber S, Nikolaus S, Malchow H et al. Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn’s disease. Gastroenterology 2001; 120: 1339–46.

    Article  PubMed  CAS  Google Scholar 

  73. Mebius RE, Streeter PR, Michie S, Butcher EC, Weissman IL. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3 cells to colonize lymph nodes. Proc Natl Acad Sci USA 1996; 93: 11019–24.

    Article  PubMed  CAS  Google Scholar 

  74. Berg EL, McEvoy LM, Berlin C, Bargatze RF, Butcher EC. L-selectin-mediated lymphocyte rolling on MAdCAM-1 [See comments]. Nature 1993; 366: 695–8.

    Article  PubMed  CAS  Google Scholar 

  75. Berlin C, Berg EL, Briskin MJ et al. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 1993; 74: 185.

    Article  PubMed  CAS  Google Scholar 

  76. Podolsky DK, Lobb R, King N et al. Attenuation of colitis in the cotton-top tamarin by anti-alpha 4 integrin monoclonal antibody. J Clin Invest 1993; 92: 372–80.

    Article  PubMed  CAS  Google Scholar 

  77. Richards CD, Braciak T, Xing Z, Graham F, Gauldie J. Adenovirus vectors for cytokine gene expression. Ann NY Acad Sci 1995; 762: 282–92; discussion 292–3.

    Article  PubMed  CAS  Google Scholar 

  78. Wilson JM. Adenoviruses as gene-delivery vehicles. N Engl J Med 1996; 334: 1185–7.

    Article  PubMed  CAS  Google Scholar 

  79. Flotte TR, Carter BJ. Adeno-associated virus vectors for gene therapy. Gene Ther 1995; 2: 357–62.

    PubMed  CAS  Google Scholar 

  80. Chao H, Samulski R, Bellinger D, Monahan P, Nichols T, Walsh C. Persistent expression of canine factor IX in hemophilia B canines. Gene Ther 1999; 6: 1695–704.

    Article  PubMed  CAS  Google Scholar 

  81. During MJ, Xu R, Young D, Kaplitt MG, Sherwin RS, Leone P. Peroral gene therapy of lactose intolerance using an adeno-associated virus vector [See comments]. Nat Med 1998; 4: 1131–5.

    Article  PubMed  CAS  Google Scholar 

  82. Laine F, Blouin V, Ferry N. Evaluation of recombinant retrovirus and adenovirus for gene transfer to normal and pathologic intestine. Gastroenterol Clin Biol 1999; 23: 221–8.

    PubMed  CAS  Google Scholar 

  83. Te Velde AA, Van Montfrans C, Spits H, Hooijberg E, Van Deventer SJH. Therapeutic potential of genetically modified T-lymphocytes in Crohn’s disease. Gastroenterology 2000; 118: A873.

    Google Scholar 

  84. Abe A, Chen ST, Miyanohara A, Friedmann T. In vitro cell-free conversion of noninfectious Moloney retrovirus particles to an infectious form by the addition of the vesicular stomatitis virus surrogate envelope G protein. J Virol 1998; 72: 6356–61.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

van Deventer, S.J.H. (2003). Targeted therapies for inflammatory bowel disease. In: Targan, S.R., Shanahan, F., Karp, L.C. (eds) Inflammatory Bowel Disease: From Bench to Bedside. Springer, Boston, MA. https://doi.org/10.1007/0-387-25808-6_27

Download citation

  • DOI: https://doi.org/10.1007/0-387-25808-6_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25807-2

  • Online ISBN: 978-0-387-25808-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics