Skip to main content

Multi-site therapeutic modalities for inflammatory bowel diseases — mechanisms of action

  • Chapter
Inflammatory Bowel Disease: From Bench to Bedside
  • 1283 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schleimer RP. An overview of glucocorticoid anti-inflammatory actions. Eur J Clin Pharmacol 1993; 45: S3–7; discussion S43–4.

    PubMed  CAS  Google Scholar 

  2. Barnes PJ, Adcock I. Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol Sci 1993; 14: 436–41.

    PubMed  CAS  Google Scholar 

  3. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Colch) 1998; 94: 557–72.

    PubMed  CAS  Google Scholar 

  4. Kirwan JR. Effects of long-term glucocorticoid therapy in rheumatoid arthritis. Z Rheumatol 2000; 59:II: 85–9.

    Google Scholar 

  5. van der Velden VH. Glucocorticoids: mechanisms of action and anti-inflammatory potential in asthma. Mediators Inflamm 1998; 7: 229–37.

    PubMed  Google Scholar 

  6. Spahn JD, Leung DY. The role of glucocorticoids in the management of asthma. Allergy Asthma Proc 1996; 17: 341–50.

    PubMed  CAS  Google Scholar 

  7. Lombardino JG. Mechanism of action of drugs for treating inflammation and arthritis. Eur J Rheumatol Inflamm 1983; 6: 24–35.

    PubMed  CAS  Google Scholar 

  8. Friend DR. Review article: Issues in oral administration of locally acting glucocorticosteroids for treatment of inflammatory bowel disease. Aliment Pharmacol Ther 1998; 12: 591–603.

    PubMed  CAS  Google Scholar 

  9. Adcock IM, Ito K. Molecular mechanisms of corticosteroid actions. Monaldi Arch Chest Dis 2000; 55: 256–66.

    PubMed  CAS  Google Scholar 

  10. Kumar R, Thompson EB. The structure of the nuclear hormone receptors. Steroids 1999; 64: 310–19.

    PubMed  CAS  Google Scholar 

  11. Webster JC, Cidlowski JA. Mechanisms of glucocorticoid-receptor-mediated repression of gene expression. Trends Endocrinol Metab 1999; 10: 396–402.

    PubMed  CAS  Google Scholar 

  12. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000; 14: 121–41.

    PubMed  CAS  Google Scholar 

  13. Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax 2000; 55: 603–13.

    PubMed  CAS  Google Scholar 

  14. McKay LI, Cidlowski JA. Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. En docrinol Rev 1999; 20: 435–59.

    CAS  Google Scholar 

  15. Truelove S, Witts L. Cortisone in ulcerative colitis: preliminary report on a therapeutic trial. Br Med J 1954; 2: 375–8.

    PubMed  CAS  Google Scholar 

  16. Truelove S, Witts L. Cortisone and corticotrophin in ulcerative colitis. Br Med J 1959; 10: 387–94.

    Google Scholar 

  17. Jones J, Lennard-Jones J. Corticosteroids and corticotrophin in the treatment of Crohn’s disease. Gut 1966; 7: 181–7.

    PubMed  CAS  Google Scholar 

  18. Roberts G, Naish J. Corticosteroids in Crohn’s disease. Gut 1968; 9: 736.

    PubMed  CAS  Google Scholar 

  19. Lennard-Jones J. Toward optimal use of corticosteroids in ulcerative colitis and Crohn’s disease. Gut 1983; 24: 177–81.

    PubMed  CAS  Google Scholar 

  20. Jewell D. Corticosteroids for the management of ulcerative colitis and Crohn’s disease. Gastroenterol Clin N Am 1989; 18:21–34.

    CAS  Google Scholar 

  21. Routes J, Claman H. Corticosteroids in inflammatory bowel disease. A review. J Clin Gastroenterol 1987; 9: 529–35.

    PubMed  CAS  Google Scholar 

  22. Hanauer S, Baert F. Medical therapy of inflammatory bowel disease. Med Clin N Am 1994; 78: 1413–26.

    PubMed  CAS  Google Scholar 

  23. Malchow H, Ewe K, Brandes J et al. European Cooperative Crohn’s Disease Study (ECCDS): results of drug treatment. Gastroenterology 1984; 86: 249–66.

    PubMed  CAS  Google Scholar 

  24. Brattsand R, Linden M. Cytokine modulation by glucocorticoids: mechanisms and actions in cellular studies. Aliment Pharmacol Ther 1996; 10: 81–92.

    PubMed  CAS  Google Scholar 

  25. Arzt E, Paez Pereda M, Costas M et al. Cytokine expression and molecular mechanisms of their auto/paracrine regulation of anterior pituitary function and growth. Ann NY Acad Sci 1998; 840: 525–31.

    PubMed  CAS  Google Scholar 

  26. Arzt E, Kovalovsky D, Igaz LM et al. Functional cross-talk among cytokines, T-cell receptor, and GR transcriptional activity and action. Ann NY Acad Sci 2000; 917: 672–7.

    Article  PubMed  CAS  Google Scholar 

  27. Barnes PJ. Novel approaches and targets for treatment of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999; 160: S72–9.

    PubMed  CAS  Google Scholar 

  28. Venkatesh VC, Ballard PL. Glucocorticoids and gene expression. Am J Respir Cell Mol Biol 1991; 4: 301–3.

    PubMed  CAS  Google Scholar 

  29. Weinberger C, Hollenberg SM, Rosenfeld MG, Evans RM. Domain structure of human glucocorticoid receptor and its relationship to the v-erb-A oncogene product. Nature 1985; 318:670–2.

    PubMed  CAS  Google Scholar 

  30. Hollenberg SM, Weinberger C, Ong ES et al. Primary structure and expression of a functional human glucocorti coid receptor cDNA. Nature 1985; 318: 635–41.

    PubMed  CAS  Google Scholar 

  31. Weinberger C, Hollenberg SM, Ong ES et al. Identification of human glucocorticoid receptor complementary DNA clones by epitope selection. Science 1985; 228: 740–2.

    PubMed  CAS  Google Scholar 

  32. Evans R. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–95.

    PubMed  CAS  Google Scholar 

  33. Arriza JL, Weinberger C, Cerelli G et al. Cloning of human mineralocorticoid receptor complementary DNA: structur al and functional kinship with the glucocorticoid receptor. Science 1987; 237: 268–75.

    PubMed  CAS  Google Scholar 

  34. Evans R. Molecular characterization of the glucocorticoid receptor. Recent Prog Horm Res 1989; 45: 1–22.

    PubMed  CAS  Google Scholar 

  35. Lamberts S, Koper J, Biemond P, den-Holder F, de-Jong F. Cortisol receptor resistance: the variability of its clinical presentation and response to treatment. J Clin Endocrinol Metab 1992; 74: 313–21.

    PubMed  CAS  Google Scholar 

  36. Lamberts SW, Huizenga AT, de Lange P, de Jong FH, Koper JW Clinical aspects of glucocorticoid sensitivity. Steroids 1996; 61: 157–60.

    PubMed  CAS  Google Scholar 

  37. Okret S, Dong Y, Tanaka H, Cairns B, Gustafsson J. The mechanism for glucocorticoid-resistance in a rat hepatoma cell variant that contains functional glucocorticoid receptor. J Steroid Biochem Mol Biol 1991; 40: 353–61.

    PubMed  CAS  Google Scholar 

  38. Schlaghecke R, Beuscher D, Kornely E, Specker C. Effects of glucocorticoids in rheumatoid arthritis. Diminished glu cocorticoid receptors do not result in glucocorticoid resis tance. Arthritis Rheum 1994; 37: 1127–31.

    PubMed  CAS  Google Scholar 

  39. Muller M, Renkawitz R. The glucocorticoid receptor. Biochim Biophys Acta 1991; 1088: 171–82.

    PubMed  CAS  Google Scholar 

  40. Muller M, Baniahmad C, Kaltschmidt C, Renkawitz R. Multiple domains of the glucocorticoid receptor involved in synergism with the CACCC box factor(s). Mol Endocrinol 1991; 5: 1498–503.

    PubMed  CAS  Google Scholar 

  41. Baniahmad C, Muller M, Altschmied J, Renkawitz R. Cooperative binding of the glucocorticoid receptor DNA binding domain is one of at least two mechanisms for synergism. J Mol Biol 1991; 222: 155–65.

    PubMed  CAS  Google Scholar 

  42. Baumann H, Paulsen K, Kovacs H et al. Refined solution structure of the glucocorticoid receptor DNA-binding do main. Biochemistry 1993; 32: 13463–71.

    PubMed  CAS  Google Scholar 

  43. Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 1991; 352:497–505.

    PubMed  CAS  Google Scholar 

  44. Pan T, Freedman LP, Coleman JE. Cadmium-113 NMR studies of the DNA binding domain of the mammalian glucocorticoid receptor. Biochemistry 1990; 29: 9218–25.

    PubMed  CAS  Google Scholar 

  45. Freedman LP, Luisi BF, Korszun ZR, Basavappa R, Sigler PB, Yamamoto KR. The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. Nature 1988; 334: 543–6.

    PubMed  CAS  Google Scholar 

  46. Freedman LP, Yamamoto KR, Luisi BF, Sigler PB. More fingers in hand. Cell 1988; 54: 444.

    PubMed  CAS  Google Scholar 

  47. Luisi BF, Schwabe JW, Freedman LP. The steroid/nuclear receptors: from three-dimensional structure to complex function. Vitam Horm 1994; 49: 1–47.

    PubMed  CAS  Google Scholar 

  48. Giguere V, Hollenberg SM, Rosenfeld MG, Evans RM. Functional domains of the human glucocorticoid receptor. Cell 1986; 46: 645–52.

    PubMed  CAS  Google Scholar 

  49. Hollenberg SM, Giguere V, Evans RM. Identification of two regions of the human glucocorticoid receptor hormone binding domain that block activation. Cancer Res 1989; 49: 2292–4..

    Google Scholar 

  50. Hollenberg SM, Giguere V, Segui P, Evans RM. Colocalization of DNA-binding and transcriptional activation functions in the human glucocorticoid receptor. Cell 1987; 49: 39–46.

    PubMed  CAS  Google Scholar 

  51. Dahlman-Wright K, Baumann H, McEwan IJ et al. Structural characterization of a minimal functional transactivation domain from the human glucocorticoid receptor. Proc Natl Acad Sci USA 1995; 92: 1699–703.

    PubMed  CAS  Google Scholar 

  52. Dahlman-Wright K, McEwan IJ. Structural studies of mutant glucocorticoid receptor transactivation domains establish a link between transactivation activity in vivo and alpha-helix-forming potential in vitro. Biochemistry 1996; 35: 1323–7.

    PubMed  CAS  Google Scholar 

  53. McEwan IJ, Wright AP, Dahlman-Wright K, Carlstedt-Duke J, Gustafsson JA. Direct interaction of the tau 1 transactivation domain of the human glucocorticoid receptor with the basal transcriptional machinery. Mol Cell Biol 1993; 13: 399–407.

    PubMed  CAS  Google Scholar 

  54. McEwan IJ, Dahlman-Wright K, Amlof T, Ford J, Wright AP, Gustafsson JA. Mechanisms of transcription activation by nuclear receptors: studies on the human glucocorticoid receptor tau 1 transactivation domain. Mutat Res 1995; 333: 15–22.

    PubMed  CAS  Google Scholar 

  55. Henriksson A, Almlof T, Ford J, McEwan IJ, Gustafsson JA, Wright AP. Role of the Ada adaptor complex in gene activation by the glucocorticoid receptor. Mol Cell Biol 1997; 17: 3065–73.

    PubMed  CAS  Google Scholar 

  56. Ford J, McEwan IJ, Wright AP, Gustafsson JA. Involvement of the transcription factor IID protein complex in gene activation by the N-terminal transactivation domain of the glucocorticoid receptor in vitro. Mol Endocrinol 1997; 11: 1467–75.

    PubMed  CAS  Google Scholar 

  57. Guarente L. Transcriptional coactivators in yeast and beyond. Trends Biochem Sci 1995; 20: 517–21.

    PubMed  CAS  Google Scholar 

  58. Zeiner M, Gehring U. A protein that interacts with mem bers of the nuclear hormone receptor family: identification and cDNA cloning. Proc Natl Acad Sci USA 1995; 92: 11465–9.

    PubMed  CAS  Google Scholar 

  59. Onate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995; 270: 1354–7.

    PubMed  CAS  Google Scholar 

  60. Chakravarti D, LaMorte VJ, Nelson MC et al. Role of CBP/P300 in nuclear receptor signalling. Nature 1996; 383: 99–103.

    PubMed  CAS  Google Scholar 

  61. Jantzen HM, Strahle U, Gloss B et al. Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell 1987; 49: 29–38.

    PubMed  CAS  Google Scholar 

  62. Beato M, Truss M, Chavez S. Control of transcription by steroid hormones. Ann NY Acad Sci 1996; 784: 93–123.

    PubMed  CAS  Google Scholar 

  63. Beato M. Gene regulation by steroid hormones. Cell 1989; 56: 335–44.

    PubMed  CAS  Google Scholar 

  64. Abbinante N, Simpson L, Leikauf G. Corticosteroids increase secretory leukocyte protease inhibitor transcript levels in airway epithelial cells. Am J Physiol 1995; 268: L601–6.

    Google Scholar 

  65. Colotta F, Dower SK, Sims JE, Mantovani A. The type II ‘decoy’ receptor: a novel regulatory pathway for interleukin 1. Immunol Today 1994; 15: 562–6.

    PubMed  CAS  Google Scholar 

  66. Colotta F, Mantovani A. Induction of the interleukin-1 decoy receptor by glucocorticoids. Trends Pharmacol Sci 1994; 15: 138–9.

    PubMed  CAS  Google Scholar 

  67. Colotta F, Re F, Muzio M et al. Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 1993; 261: 472–5.

    PubMed  CAS  Google Scholar 

  68. Purton JF, Boyd RL, Cole TJ, Godfrey DI. Intrathymic T cell development and selection proceeds normally in the absence of glucocorticoid receptor signaling. Immunity 2000; 13: 179–86.

    PubMed  CAS  Google Scholar 

  69. Kofler R. The molecular basis of glucocorticoid-induced apoptosis of lymphoblastic leukemia cells. Histochem Cell Biol 2000; 114: 1–7.

    PubMed  CAS  Google Scholar 

  70. Hulkko SM, Wakui H, Zilliacus J. The pro-apoptotic protein death-associated protein 3 (DAP3) interacts with the glucocorticoid receptor and affects the receptor function. Biochem J 2000;349: 885–93.

    PubMed  CAS  Google Scholar 

  71. Jamieson CA, Yamamoto KR. Crosstalk pathway for inhibition of glucocorticoid-induced apoptosis by T cell receptor signaling. Proc Natl Acad Sci USA 2000; 97: 7319–24.

    PubMed  CAS  Google Scholar 

  72. Tolosa E, King LB, Ashwell JD. Thymocyte glucocorticoid resistance alters positive selection and inhibits autoimmunity and lymphoprolifcrativc disease in MRL-lpr/lpr mice. Immunity 1998; 8: 67–76.

    PubMed  CAS  Google Scholar 

  73. Cidlowski JA, King KL, Evans-Storms RB, Montague JW, Bortner CD, Hughes FM, Jr. The biochemistry and mole cular biology of glucocorticoid-induced apoptosis in the immune system. Recent Prog Horm Res 1996; 51: 457–90.

    PubMed  CAS  Google Scholar 

  74. Nieto MA, Gonzalez A, Gambon F, Diaz-Espada F, Lopez-Rivas A. Apoptosis in human thymocytes after treatment with glucocorticoids. Clin Exp Immunol 1992; 88: 341–4.

    Article  PubMed  CAS  Google Scholar 

  75. Wyllie AH, Morris RG. Hormone-induced cell death. Purification and properties of thymocytes undergoing apoptosis after glucocorticoid treatment. Am J Pathol 1982; 109: 78–87.

    PubMed  CAS  Google Scholar 

  76. Wyllie AH, Morris RG, Smith AL, Dunlop D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 1984; 142: 67–77.

    PubMed  CAS  Google Scholar 

  77. Ramdas J, Liu W, Harmon JM. Glucocorticoid-induced cell death requires autoinduction of glucocorticoid receptor expression in human leukemic T cells. Cancer Res 1999; 59: 1378–85.

    PubMed  CAS  Google Scholar 

  78. Ramdas J, Harmon JM. Glucocorticoid-induced apoptosis and regulation of NF-kappaB activity in human leukemic T cells. Endocrinology 1998; 139: 3813–21.

    PubMed  CAS  Google Scholar 

  79. Drouin J, Sun YL, Chamberland M et al. Novel glucocorticoid receptor complex with DNA element of the hormonerepressed POMCgene. EMBO J 1993; 12: 145–56.

    PubMed  CAS  Google Scholar 

  80. Charron J, Drouin J. Glucocorticoid inhibition of transcription from episomal proopiomelanocortin gene promotor. Proc Natl Acad Sci USA 1986; 83: 8903–7.

    PubMed  CAS  Google Scholar 

  81. Malkoski SP, Handanos CM, Dorin RI. Localization of a negative glucocorticoid response element of the human corticotropin releasing hormone gene. Mol Cell Endocrinol 1997; 127: 189–99.

    PubMed  CAS  Google Scholar 

  82. Malkoski SP, Dorin RI. Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Mol Endocrinol 1999; 13: 1629–44.

    PubMed  CAS  Google Scholar 

  83. Murphy EP, Conneely OM. Neuroendocrine regulation of the hypothalamic pituitary adrenal axis by the nurrl/nur77 subfamily of nuclear receptors. Mol Endocrinol 1997; 11: 39–47.

    PubMed  CAS  Google Scholar 

  84. Newton R, Barnes P, Adcock I. Transcription factors. In: Barnes PJ, Rodger IW, Thomson NC, eds. Asthma: Basic mechanisms and clinical management. London: Academic Press, 1998: 459–74.

    Google Scholar 

  85. Schule R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N, Verma IM, Evans RM. Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 1990; 62: 1217–26.

    PubMed  CAS  Google Scholar 

  86. Jonat C, Rahmsdorf HJ, Park KK et al. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 1990; 62:1189–204.

    PubMed  CAS  Google Scholar 

  87. Yang-Yen HF, Chambard JC, Sun YL et al. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 1990; 62: 1205–15.

    PubMed  CAS  Google Scholar 

  88. Konig H, Ponta H, Rahmsdorf HJ, Herrlich P. Interference between pathway-specific transcription factors: glucocorticoids antagonize phorbol ester-induced AP-1 activity with out altering AP-1 site occupation in vivo. EMBO J 1992; 11: 2241–6.

    PubMed  CAS  Google Scholar 

  89. Caldenhoven E, Liden J, Wissink S et al. Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids. Mol Endocrinol 1995; 9: 401–12.

    PubMed  CAS  Google Scholar 

  90. Ray A, Prefontaine KE. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 1994; 91: 752–6.

    PubMed  CAS  Google Scholar 

  91. Ray A, Siegel MD, Prefontaine KE, Ray P. Anti-inflammation: direct physical association and functional antagonism between transcription factor NF-KB and the glucocorticoid receptor. Chest. 1995; 107: 139S.

    PubMed  CAS  Google Scholar 

  92. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS, Jr. Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 1995; 15: 943–53.

    PubMed  CAS  Google Scholar 

  93. McKay LI, Cidlowski JA. CBP (CREB binding protein) integrates NF-kappaB (nuclear factor-kappaB) and glucocorticoid receptor physical interactions and antagonism. Mol Endocrinol 2000; 14: 1222–34.

    PubMed  CAS  Google Scholar 

  94. McKay LI, Cidlowski JA. Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol 1998; 12: 45–56.

    PubMed  CAS  Google Scholar 

  95. Brostjan C, Anrather J, Csizmadia V et al. Glucocorticoid-mediated repression of NFkappaB activity in endothelial cells does not involve induction of Ikappa Balpha synthesis. J Biol Chem 1996; 271: 19612–16.

    PubMed  CAS  Google Scholar 

  96. Wissink S, van Heerde EC, Schmitz ML et al. Distinct domains of the RelA NF-kappaB subunit are required for negative cross-talk and direct interaction with the glucocorticoid receptor. J Biol Chem 1997; 272: 22278–84.

    PubMed  CAS  Google Scholar 

  97. Wissink S, van Heerde EC, van der Burg B, van der Saag PT. A dual mechanism mediates repression of NF-kappaB activity by glucocorticoids. Mol Endocrinol 1998; 12: 355–63.

    PubMed  CAS  Google Scholar 

  98. Kamei Y, Xu L, Heinzel T et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996; 85: 403–14.

    PubMed  CAS  Google Scholar 

  99. Sheppard KA, Rose DW, Haque ZK et al Transcriptional activation by NF-kappaB requires multiple coactivators. Mol Cell Biol 1999; 19: 6367–78.

    PubMed  CAS  Google Scholar 

  100. Sheppard KA, Phelps KM, Williams AJ et al Nuclear integration of glucocorticoid receptor and nuclear factor-kappaB signaling by CREB-binding protein and steroid receptor coactivator-1. J Biol Chem 1998; 273: 29291–4.

    PubMed  CAS  Google Scholar 

  101. Kurokawa R, Kalafus D, Ogliastro MH et al. Differential use of CREB binding protein-coactivator complexes. Science 1998; 279: 700–3.

    PubMed  CAS  Google Scholar 

  102. Horvai AE, Xu L, Korzus E et al. Nuclear integration of JAKISTAT and Ras/AP-1 signaling by CBP and p300. Proc Natl Acad Sci USA 1997; 94: 1074–9.

    PubMed  CAS  Google Scholar 

  103. Glass CK, Rose DW, Rosenfeld MG. Nuclear receptor coactivators. Curr Opin Cell Biol 1997; 9: 222–32.

    PubMed  CAS  Google Scholar 

  104. Ray DW, Suen CS, Brass A, Soden J, White A. Structure/function of the human glucocorticoid receptor: tyrosine 735 is important for transactivation. Mol Endocrinol 1999; 13: 1855–63.

    PubMed  CAS  Google Scholar 

  105. Radoja N, Komine M, Jho SH, Blumenberg M, Tomic-Canic M. Novel mechanism of steroid action in skin through glucocorticoid receptor monomers. Mol Cell Biol 2000; 20: 4328–39.

    PubMed  CAS  Google Scholar 

  106. Oshima H, Simons SS, Jr. Modulation of transcription factor activity by a distant steroid modulatory element. Mol Endocrinol 1992; 6: 416–28.

    PubMed  CAS  Google Scholar 

  107. Zeng H, Plisov SY, Simons SS, Jr. Ability of the glucocorticoid modulatory element to modify glucocorticoid receptor transactivation indicates parallel pathways for the expression of glucocorticoid modulatory element and glucocorticoid response element activities. Mol Cell Endocrinol 2000; 162: 221–34.

    PubMed  CAS  Google Scholar 

  108. Kaul S, Blackford JA, Jr., Chen J, Ogryzko VV, Simons SS, Jr. Properties of the glucocorticoid modulatory element binding proteins GMEB-1 and-2: potential new modifiers of glucocorticoid receptor transactivation and members of the family of KDWK proteins. Mol Endocrinol 2000; 14: 1010–27.

    PubMed  CAS  Google Scholar 

  109. Jimenez-Lara AM, Heine MJ. Gronemeyer H. Cloning of a mouse glucocorticoid modulatory element binding protein, a new member of the KDWK family. FEBS Lett 2000; 468:203–10.

    PubMed  CAS  Google Scholar 

  110. Theriault JR, Charette SJ, Lambert H, Landry J. Cloning and characterization of hGMEB1, a novel glucocorticoid modulatory element binding protein. FEBS Lett 1999; 452: 170–6.

    PubMed  CAS  Google Scholar 

  111. Zeng H, Jackson DA, Oshima H, Simons SS, Jr. Cloning and characterization of a novel binding factor (GMEB-2) of the glucocorticoid modulatory element. J Biol Chem 1998;273: 17756–62.

    PubMed  CAS  Google Scholar 

  112. Zeng H, Kaul S, Simons SS, Jr. Genomic organization of human GMEB-1 and rat GMEB-2: structural conservation of two multifunctional proteins. Nucleic Acids Res 2000; 28:1819–29.

    PubMed  CAS  Google Scholar 

  113. Oakley RH, Cidlowski JA. Homologous down regulation of the glucocorticoid receptor: the molecular machinery. Crit Rev Eukaryot Gene Expr. 1993; 3: 63–88.

    PubMed  CAS  Google Scholar 

  114. Burnstein KL, Cidlowski JA. Regulation of gene expression by glucocorticoids. Annu Rev Physiol 1989; 51: 683–99.

    PubMed  CAS  Google Scholar 

  115. Burnstein KL, Jewell CM, Cidlowski JA. Human glucocorticoid receptor cDNA contains sequences sufficient for receptor down-regulation. J Biol Chem 1990; 265: 7284–91.

    PubMed  CAS  Google Scholar 

  116. Burnstein KL, Bellingham DL, Jewell CM, Powell-Oliver FE, Cidlowski JA. Autoregulation of glucocorticoid receptor gene expression. Steroids 1991; 56: 52–8.

    PubMed  CAS  Google Scholar 

  117. Burnstein KL, Cidlowski JA. The down side of glucocorticoid receptor regulation. Mol Cell Endocrinol 1992; 83: C1–8.

    PubMed  CAS  Google Scholar 

  118. Burnstein KL, Cidlowski JA. Multiple mechanisms for regulation of steroid hormone action. J Cell Biochem 1993;51: 1304.

    Google Scholar 

  119. Webster JC, Cidlowski JA. Downregulation of the glucocorticoid receptor. A mechanism for physiological adaptation to hormones. Ann NY Acad Sci 1994; 746: 216–20.

    Article  PubMed  CAS  Google Scholar 

  120. Webster JC, Jewell CM, Bodwell JE, Munck A, Sar M, Cidlowski JA. Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein. J Biol Chem 1997; 272: 9287–93.

    PubMed  CAS  Google Scholar 

  121. Bamberger CM, Bamberger AM, de Castro M, Chrousos GP. Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest 1995; 95: 2435–41.

    PubMed  CAS  Google Scholar 

  122. Bamberger CM, Else T, Bamberger AM, Beil FU, Schulte HM. Regulation of the human interleukin-2 gene by the alpha and beta isoforms of the glucocorticoid receptor. Mol Cell Endocrinol 1997; 136: 23–8.

    PubMed  CAS  Google Scholar 

  123. Bamberger CM, Bamberger AM, Wald M, Chrousos GP, Schulte HM. Inhibition of mineralocorticoid activity by the beta-isoform of the human glucocorticoid receptor. J Steroid Biochem Mol Biol 1997; 60: 43–50.

    PubMed  CAS  Google Scholar 

  124. Bamberger CM, Schulte HM, Chrousos GP. Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocrinol Rev 1996; 17:245–61.

    CAS  Google Scholar 

  125. Oakley RH, Sar M. Cidlowski JA. The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J Biol Chem 1996; 271: 9550–9.

    PubMed  CAS  Google Scholar 

  126. Oakley RH. Webster JC, Sar M, Parker CR, Jr, Cidlowski JA. Expression and subcellular distribution of the betaisoform of the human glucocorticoid receptor. Endocrinology 1997; 138: 5028–38.

    PubMed  CAS  Google Scholar 

  127. Oakley RH, Jcwcll CM. Yudt MR. Bofetiado DM, Cidlowski JA. The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J Biol Chcm 1999; 274: 27857–66.

    CAS  Google Scholar 

  128. Sousa AR. Lane SJ, Cidlowski JA. Staynov DZ. Lee TH. Glucocorticoid rcsistancc in asthma is associated with clcvnted in vivo expression of the glucocorticoid receptor beta-isoform. J Allergy Clin Immunol 2000; 105: 943–50.

    PubMed  CAS  Google Scholar 

  129. Christodoulopoulos P, Lcung DY, Elliott MW et al. Increased number of glucocorticoid receptor-beta-expressing cells in the airways in fatal asthma. J Allergy Clin Immunol 2000; 106: 479–84.

    PubMed  CAS  Google Scholar 

  130. Hatmid QA. Wenzel SE. Hauk PJ et al. Increased glucocorticoid receptor beta in airway cells of glucocorticoid-insensitive asthma. Am J Respir Crit Care Med 1999; 159: 1600–4.

    Google Scholar 

  131. Gagliardo R. Chanez P. Vignoln AM et al. Glucocorticoid receptor alpha and bcta in glucocorticoid dependent asthma. Am J Respir Crit Care Med 2000: 162: 7–13.

    PubMed  CAS  Google Scholar 

  132. Carlstcdt-Duke J. Glucocorticoid receptor beta: View II. Trends Endocrinol Metab 1999: 10: 339–42.

    Google Scholar 

  133. Vottero A, Chrousos GP. Glucocorticoid Receptor beta: View I. Trends Endoerinol Metab 1999; 10: 333–8.

    CAS  Google Scholar 

  134. Stahl M, Ludwig D, Fellermann K, Stange EF. Intestinal expression of human heat shock protein 90 in patients with Crohn’s disease and ulcerative colitis. Dig Dis Sci 1998; 43:1079–87.

    PubMed  CAS  Google Scholar 

  135. Shimada T. Hiwatashi N, Yamazaki H, Kinouchi Y. Toyota T. Relationship between glucocorticoid receptor and response to glucocorticoid therapy in ulcerative colitis. Dis Colon Rectum 1997; 40: S548.

    Google Scholar 

  136. Rogler G, Meinel A. Lingauer A et al. Glucocorticoid receptors are down-regulated in inflamed colonic mucosa but not in peripheral blood mononuclear cells from patients with inflammatory bowel disease. Eur J Clin Invest 1999; 29: 330–6.

    PubMed  CAS  Google Scholar 

  137. Rosewicz S, McDonald AR, Maddux BA, Goldfine ID, Miesfeld RL, Logsdon CD. Mechanism of glucocorticoid receptor down-regulation by glucocorticoids. J Biol Chem 1988; 263: 25814.

    Google Scholar 

  138. Okret S, Poellinger L, Dong Y, Gustafsson JA. Down-regulation of glucocorticoid receptor mRNA by glucocorticoid hormones and recognition by the receptor of a specific binding sequence within a receptor cDNA clone. Proc Natl Acad Sci USA 1986; 83: 5899–903.

    PubMed  CAS  Google Scholar 

  139. Cidlowski JA, Cidlowski NB. Regulation of glucocorticoid receptors by glucocorticoids in cultured HeLa S3 cells. Endocrinology. 1981; 109: 1975–82.

    Article  PubMed  CAS  Google Scholar 

  140. Honda M, Orii F, Ayabe T et al. Expression of glucocorticoid receptor beta in lymphocytes of patients with glucocorticoid-resistant ulcerative colitis. Gastroenterology 2000; 118: 859–66.

    PubMed  CAS  Google Scholar 

  141. Stange EF. Glucocorticoid receptor activity in inflammatory bowel disease: hindsight or foresight? Eur J Clin Invest 1999; 29: 278–9.

    PubMed  CAS  Google Scholar 

  142. Boumpas DT, Paliogianni F, Anastassiou ED, Balow JE. Glucocorticosteroid action on the immune system: molecular and cellular aspects. Clin Exp Rheumatol 1991; 9: 413–23.

    PubMed  CAS  Google Scholar 

  143. Almawi WY, Melcmedjian OK. Rieder MJ. An alternate mechanism of glucocorticoid anti-proliferative erect: promotion of a Th2 cytokine-secreting profile. Clin Transplant 1999; 13: 365–74.

    PubMed  CAS  Google Scholar 

  144. Kirsch AH, Mahmood AA, Endres J et al. Apoptosis of human T-cells: induction by glucocorticoids or surface receptor ligation in vitro and ex vivo. J Biol Regul Homeost Agents 1999; 13: 80–9.

    PubMed  CAS  Google Scholar 

  145. Lanza L, Scudeletti M, Puppo F et al. Prednisone increases apoptosis in in vitro activated human peripheral blood T lymphocytes. Clin Exp Immunol 1996; 103: 482–90.

    Article  PubMed  CAS  Google Scholar 

  146. King LB. Ashwell JD. Signaling for death of lymphoid cells. Curr Opin Immunol 1993; 5: 368–73.

    PubMed  CAS  Google Scholar 

  147. Chapman MS. Askew DJ. Kuscuoglu U. Miesfeld RL. Transcriptional control of steroid-regulated apoptosis in murinc thymoma cells. Mol Endocrinol 1996; 10: 967–78.

    PubMed  CAS  Google Scholar 

  148. Van Houtcn N, Blake SF. Li EJ et al. Elevated expression of Bcl-2 and Bcl-x by intestinal intraepithelial lymphocytes: resistance to apoptosis by glucocorticoids and irradiation. Int Immunol 1997; 9: 945–53.

    Google Scholar 

  149. Franchimont D. Galon J. Gadinn M et al. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J Immunol 2000; 164: 1768–74.

    PubMed  CAS  Google Scholar 

  150. Girndt M. Sester U. Kaul H. Hunger F. Kohler H. Glucocorticoids inhibit aetivation-dependent expression of costimulatory molecule B7-1 in human monocytes. Transplantation 1998; 66: 370–5.

    PubMed  CAS  Google Scholar 

  151. Wagner DH, Jr. Hagman J, Linsley PS, Hodsdon W, Freed JH. Newell MK. Rescue of thymocytes from glucocorticoid-induced cell death mediated by CD28lCTLA-4 costimulatory interactions with B7-llB7-2. J Exp Med 1996; 184:1631–8.

    PubMed  CAS  Google Scholar 

  152. Rogler G. Hausmann M. Vogl D et al. Isolation and phenotypic characterization of colonic macrophages. Clin Exp Immunol 1998; 112: 205–15.

    PubMed  CAS  Google Scholar 

  153. Rogler G. Hausmann M, Spottl T et al. T-cell co-stimulatory molecules are upregulated on intestinal macrophages from inflammatory bowel disease mucosa. Eur J Gastroenterol Hepatol 1999; 11: 1105–1111.

    PubMed  CAS  Google Scholar 

  154. Andus T, Rogler G, Daig R, Falk W, Schölmerich J, Gross V. The role of macrophages. In: Tygat GNJ, Bartelsman JFWM, van Deventer SJH, eds. Inflammatory Bowel Disease. Dordrecht: Kluwer, 1995: 281–97

    Google Scholar 

  155. Lee SH, Starkey PM, Gordon S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4180. J Exp Med 1985; 161: 475–489.

    PubMed  CAS  Google Scholar 

  156. Donnellan WL. The structure of the colonic mucosa. The epithelium and subepithelial reticulohistiocytic complex. Gastroenterology 1965; 49: 496–514.

    PubMed  CAS  Google Scholar 

  157. Rogler G, Andus T, Aschenbrenner E et al. Alterations of the phenotype of colonic macrophages in inflammatory bowel disease. Eur J Gastroenterol Hepatol 1997; 9: 893–9.

    PubMed  CAS  Google Scholar 

  158. Mahida YR, Patel S, Gionchetti P, Vaux D, Jewell DP. Macrophage subpopulations in lamina propria of normal and inflamed colon and terminal ileum. Gut 1989; 30: 826–34.

    PubMed  CAS  Google Scholar 

  159. Malizia G, Calabrese A, Cottone M et al. Expression of leukocyte adhesion molecules by mucosal mononuclear phagocytes in inflammatory bowel disease. Gastroenterology 1991; 100: 150–9.

    PubMed  CAS  Google Scholar 

  160. Tanner AR, Arthur MJ, Wright R. Macrophage activation, chronic inflammation and gastrointestinal disease. Gut 1984; 25: 760–83.

    PubMed  CAS  Google Scholar 

  161. Thyberg J, Graf W, Klingenstrom P. Intestinal tine structure in Crohn’s disease. Lysosomal inclusions in epithelial cells and macrophages. Virchows Arch A Pathol Anat Histol 1981; 391: 141–52.

    PubMed  CAS  Google Scholar 

  162. Meuret G, Bitzi A, Hammer B. Macrophage turnover in Crohn’s diseasc and ulcerative colitis. Gastroenterology 1978; 74: 501–3.

    PubMed  CAS  Google Scholar 

  163. Hirata I, Murano M, Nitta M et al. Estimation of mucosal inflammatory mediators in rat DSS-induced colitis. Possible role of PGE(2) in protection against mucosal damage. Digestion 2001; 63: 73–80.

    CAS  Google Scholar 

  164. Nieto N, Torres MI, Fernandez MI et al. Experimental ulcerative colitis impairs antioxidant defense system in rat intestine. Dig Dis Sci 2000; 45: 1820–7.

    PubMed  CAS  Google Scholar 

  165. Raab Y, Sundberg C, Hallgren R, Knutson L, Gerdin B. Mucosal synthesis and release of prostaglandin E2 from activated eosinophils and macrophages in ulcerative colitis. Am J Gastroenterol 1995; 90: 614–20.

    PubMed  CAS  Google Scholar 

  166. van Heeckeren AM, Rikihisa Y, Park J, Fertel R. Tumor necrosis factor alpha, interleukin-l alpha, interleukin-6, and prostaglandin E2 production in murine peritoneal macro-phages infected with Ehrlichicr risticii. Infect Immun 1993;61: 4333–7.

    PubMed  Google Scholar 

  167. Yamashita S. Studies on changes of colonic mucosal PGE2 levels and tissue localization in experimental colitis. Gastroenterol Jpn 1993; 28: 224–35.

    PubMed  CAS  Google Scholar 

  168. Schreiber S, Raedler A, Stenson WF, MacDermott RP. The role of the mucosal immune system in inflammatory bowel disease. Gastroenterol Clin N Am 1992; 21: 451–502.

    CAS  Google Scholar 

  169. Donowitz M. Arachidonic acid metabolites and their role in inflammatory bowel diseasc. An update requiring addition of a pathway. Gastroenterology 1985; 88: 580–7.

    PubMed  CAS  Google Scholar 

  170. Eliakim R, Karmeli F, Razin E, Rachmilewitz D. Role of platelet-activating factor in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine and prednisolone. Gastroenterology 1988; 95: 1167–72.

    PubMed  CAS  Google Scholar 

  171. Reinecker HC, Steffen M, Witthoeft T et al. Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s disease. Clin Exp Immunol 1993; 94: 174–81.

    Article  PubMed  CAS  Google Scholar 

  172. Grimm MC, Elsbury SK, Pavli P, Doc WF. Interleukin 8: cells of origin in inflammatory bowel disease. Gut 1996; 38:90–8.

    PubMed  CAS  Google Scholar 

  173. Mahida YR, Wu K, Jewell DP. Enhanced production of interleukin I-beta by mononuclcar cells isolated from mucosa with active ulcerative colitis of Crohn’s disease. Gut 1989; 30: 835–8.

    PubMed  CAS  Google Scholar 

  174. Rogler G, Andus T. Cytokines in inflammatory bowel disease. World J Surg. 1998; 22: 382–9.

    PubMed  CAS  Google Scholar 

  175. Gross V, Andus T, Leser HG, Roth M, Scholmerich J. Inflammatory mediators in chronic inflammatory bowel diseases.. Klin Wochenschr. 1991; 69: 981–7.

    PubMed  CAS  Google Scholar 

  176. Andus T, Gross V, Casar I et al. Activation of monocytes during inflammatory bowel disease. Pathobiology 1991; 59:166–70.

    PubMed  CAS  Google Scholar 

  177. Stylianou E, Nic M, Ucda A, Zhao L. c-Rel and p65 transactivate the monocyte chemoattractant protein-l gene in interleukin-l stimulated mesangial cells. Kidney Int 1999;56: 873–82.

    PubMed  CAS  Google Scholar 

  178. Vincenti MP, Coon CI, Brinckerhoff CE. Nuclear factor kappaBIp50 activates an element in the distal matrix metalloproteinase I promoter in interleukin-1 beta-stimulated synovial fibroblasts. Arthritis Rheum 1998; 41: 1987–94.

    PubMed  CAS  Google Scholar 

  179. Martin T, Cardarelli PM, Parry GC, Felts KA, Cobb RR. Cytokine induction of monocyte chemoattractant protein-1 gene expression in human endothelial cells depends on the cooperative action of NF-kappa B and AP-1. Eur J Immunol 1997; 27: 1091–7.

    PubMed  CAS  Google Scholar 

  180. Mori N, Prager D. Transactivation of the interleukin-1alpha promoter by human T-cell leukemia virus type I and type II Tax proteins. Blood 1996; 87: 3410–17.

    PubMed  CAS  Google Scholar 

  181. Parry GC, Mackman N. Transcriptional regulation of tissue factor expression in human endothelial cells. Arterioscler Thromb Vasc Biol 1995; 15: 612–21.

    PubMed  CAS  Google Scholar 

  182. Kunsch C, Lang RK, Rosen CA, Shannon MF. Synergistic transcriptional activation of the IL-8 gene by NF-kappa B p65 (RelA) and NF-IL-6. J Immunol 1994; 153: 153–64.

    PubMed  CAS  Google Scholar 

  183. Dunn SM, Coles LS, Lang RK, Gerondakis S, Vadas MA, Shannon MF. Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 1994; 83: 2469–79.

    PubMed  CAS  Google Scholar 

  184. Hiscott J, Marois J, Garoufalis J et al. Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol Cell Biol 1993; 13: 6231–40.

    PubMed  CAS  Google Scholar 

  185. Kunsch C, Rosen CA. NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol 1993; 13:613746.

    Google Scholar 

  186. Roebuck KA, Carpenter LR, Lakshminarayanan V, Page SM, Moy JN, Thomas LL. Stimulus-specific regulation of chemokine expression involves differential activation of the redox-responsive transcription factors AP-1 and NF-kappaB. J Leukoc Biol 1999; 65: 291–8.

    PubMed  CAS  Google Scholar 

  187. Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell 1996; 87: 13–20.

    PubMed  CAS  Google Scholar 

  188. McKay DM, Perdue MH. Intestinal epithelial function: the case for immunophysiological regulation. Cells and mediators (I). Dig Dis Sci 1993; 38: 1377–87.

    PubMed  CAS  Google Scholar 

  189. McKay DM, Perdue MH. Intestinal epithelial function: the case for immunophysiological regulation. Implications for disease (2). Dig Dis Sci 1993; 38: 1735–45.

    PubMed  CAS  Google Scholar 

  190. Perdue MH, McKay DM. Integrative immunophysiology in the intestinal mucosa. Am J Physiol 1994; 267: G151–65.

    PubMed  CAS  Google Scholar 

  191. Selby WS, Janossy G, Mason DY, Jewell DP. Expression of HLA-DR antigens by colonic epithelium in inflammatory bowel disease. Clin Exp lmmunol 1983; 53: 614–18.

    CAS  Google Scholar 

  192. Bland PW, Whiting CV. Induction of MHC class II gene products in rat intestinal epithelium during graft-vcrsushost disease and effects on the immune function of the epithelium. Immunology 1992; 75: 366–71.

    PubMed  CAS  Google Scholar 

  193. Bland PW, Warren LG. Antigen presentation by epithelial cells of the rat small intestine. II. Selective induction of suppressor T cells. Immunology 1986; 58: 9–14.

    PubMed  CAS  Google Scholar 

  194. Bland PW, Warren LG. Antigen presentation by epithelial cells of the rat small intestine. I. Kinetics, antigen specificity and blocking by anti-Ia antisera. Immunology 1986; 58: 1–7.

    PubMed  CAS  Google Scholar 

  195. Mayer L, Shlien R. Evidence for function of Ia molecules on gut epithelial cells in man. J Exp Med 1987; 166: 1471–83.

    PubMed  CAS  Google Scholar 

  196. Panja A, Barone A, Mayer L. Stimulation of lamina propria lymphocytes by intestinal epithelial cells: evidence for recognition of nonclassical restriction elements. J Exp Med 1994; 179: 943–50.

    PubMed  CAS  Google Scholar 

  197. Jung HC, Eckmann L, Yang SK rt al. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin lnvcst 1995; 95: 55–65.

    CAS  Google Scholar 

  198. Eckmann L, Recd SL, Smith JR, Kagnoff MF. Entamoeba histolytica trophozoites induce an inflammatory cytokine response by cultured human cells through the paracrine action of cytolytically released interleukin-1 alpha. J Clin Invest 1995; 96: 1269–79.

    PubMed  CAS  Google Scholar 

  199. Gibson P, Rosella O. Interleukin 8 secretion by colonic crypt cells in vitro: response to injury suppressed by butyrate and enhanced in inflammatory bowel disease. Gut 1995; 37:536–43.

    PubMed  CAS  Google Scholar 

  200. Daig R, Rogler G. Aschenbrenner E et al. Human intestinal epithelial cells secrete interleukin-1 receptor antagonist and interleukin-8 but not interleukin-1 or interleukin-6. Gut 2000; 46: 350–8.

    PubMed  CAS  Google Scholar 

  201. Shirota K, LeDuy L, Yuan SY, Jothy S. Interleukin-6 and its receptor are expressed in human intestinal epithelial cells. Virchows Arch B Cell Pathol Incl Mol Pathol 1990; 58: 303–8.

    Article  PubMed  CAS  Google Scholar 

  202. Bocker U, Damiao A, Holt L et al. Differential expression of interleukin 1 receptor antagonist isoforms in human intestinal epithelial cells. Gastroenterology 1998; 115: 1426–38.

    PubMed  CAS  Google Scholar 

  203. Warhurst AC, Hopkins SJ, Warhurst G. Interferon gamma induces differential upregulation of alpha and beta chemokine secretion in colonic epithelial cell lines. Gut 1998; 42: 208–13.

    Article  PubMed  CAS  Google Scholar 

  204. Yang SK, Eckmann L, Panja A, Kagnoff MF. Differential and regulated expression of C-X-C, C-C, and C-chemokines by human colon epithelial cells. Gastroenterology 1997; 113: 1214–23.

    PubMed  CAS  Google Scholar 

  205. Eckmann L, Jung HC, Schurer-Maly C, Panja A, Morzycka-Wroblewska E, Kagnoff MF. Differential cytokine expression by human intestinal epithelial cell lines: regulated expression of interleukin 8. Gastroenterology 1993; 105: 1689–97.

    PubMed  CAS  Google Scholar 

  206. Parikh AA, Salzman AL, Kane CD, Fischer JE, Hasselgren PO. IL-6 production in human intestinal epithelial cells following stimulation with IL-1 beta is associated with activation of the transcription factor NF-kappa B. J Surg Res 1997; 69: 139–44.

    PubMed  CAS  Google Scholar 

  207. Jobin C, Panja A, Hellcrbrand C et al. Inhibition of proinflammatory molecule production by adenovirus-mediated expression of a nuclear factor kappaB super-repressor in human intestinal epithelial cells. J Immunol 1998; 160: 410–18.

    PubMed  CAS  Google Scholar 

  208. Rogler G, Brand K, Vogl D et al. Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 1998; 115: 357–69.

    PubMed  CAS  Google Scholar 

  209. Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut 1998; 42: 477–84.

    Article  PubMed  CAS  Google Scholar 

  210. Cavicchi M, Whittle BJ. Regulation of induction of nitric oxide synthase and the inhibitory actions of dexamethasone in the human intestinal epithelial cell line, Caco-2: influence of cell differentiation. Br J Pharmacol 1999; 128: 705–15.

    PubMed  CAS  Google Scholar 

  211. Zareie M, Brattsand R, Sherman PM, McKay DM, Perdue MH. Improved effects of novel glucocorticosteroids on immune-induced epithelial pathophysiology. J Pharmacol ExpTher 1999; 289: 1245–9.

    CAS  Google Scholar 

  212. Willoughby CP, Piris J, Truelove SC. Tissue eosinophils in ulcerative colitis. Scand J Gastroenterol 1979; 14: 395–9.

    PubMed  CAS  Google Scholar 

  213. Dvorak AM, Monahan RA, Osage JE, Dickersin GR. Crohn’s disease: transmission electron microscopic studies. II. Immunologic inflammatory response. Alterations of mast cells, basophils, eosinophils, and the microvasculature. Hum Pathol 1980; 11: 606–19.

    PubMed  CAS  Google Scholar 

  214. Bischoff SC, Wedemeyer J, Herrmann A et al. Quantitative assessment of intestinal eosinophils and mast cells in inflammatory bowel disease. Histopathology 1996; 28: 1–13.

    PubMed  CAS  Google Scholar 

  215. Geboes K. From inflammation to lesion. Acta Gastroenterol Belg 1994; 57:273–84.

    PubMed  CAS  Google Scholar 

  216. Sarin SK, Malhotra V, Sen Gupta S, Karol A, Gaur SK, Anand BS. Significance of eosinophil and mast cell counts in rectal mucosa in ulcerative colitis. A prospective controlled study. Dig Dis Sci 1987; 32: 363–7.

    PubMed  CAS  Google Scholar 

  217. Choy MY, Walker-Smith JA, Williams CB, MacDonald TT. Activated eosinophils in chronic inflammatory bowel disease. Lancet 1990; 336: 126–7.

    PubMed  CAS  Google Scholar 

  218. Seegert D, Rosenstiel P, Pfahler H, Pfefferkorn P, Nikolaus S, Schreiber S. Increased expression of IL-16 in inflammatory bowel disease. Gut 2001; 48: 326–32.

    PubMed  CAS  Google Scholar 

  219. Louahed J, Zhou Y, Maloy WL et al. Interleukin 9 promotes influx and local maturation of eosinophils. Blood 2001; 97: 1035–42.

    PubMed  CAS  Google Scholar 

  220. Jinquan T, Jing C, Jacobi HH et al. CXCR3 expression and activation of eosinophils: role of IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma. J Immunol 2000; 165: 1548–56.

    PubMed  CAS  Google Scholar 

  221. Schwingshackl A, Duszyk M, Brown N, Moqbel R. Human eosinophils release matrix metalloproteinase-9 on stimulation with TNF-alpha. J Allergy Clin Immunol 1999; 104: 983–9.

    PubMed  CAS  Google Scholar 

  222. Velazquez JR, Lacy P, Mahmudi-Azer S, Moqbel R. Effects of interferon-gamma on mobilization and release of eosinophil-derived RANTES. Int Arch Allergy Immunol 1999; 118:447–9.

    PubMed  CAS  Google Scholar 

  223. Miyamasu M, Hirai K, Takahashi Y et al. Chemotactic agonists induce cytokine generation in eosinophils. J Immunol 1995; 154: 1339–49.

    PubMed  CAS  Google Scholar 

  224. Hansel TT, Braun RK, De Vries J et al. Eosinophils and cytokines. Agents Actions Suppl. 1993; 43: 197–208

    PubMed  CAS  Google Scholar 

  225. Yamashita N, Koizumi H, Murata M, Mano K, Ohta K. Nuclear factor kappa B mediates interleukin-8 production in eosinophils. Int Arch Allergy Immunol 1999; 120: 230–6.

    PubMed  CAS  Google Scholar 

  226. Jang AS, Choi IS, Koh YI et al. Effects of prednisolone on eosinophils, IL-5, eosinophil cationic protein, EG2+ eosinophils, and nitric oxide metabolites in the sputum of patients with exacerbated asthma. J Korean Med Sci 2000; 15:521–8.

    PubMed  CAS  Google Scholar 

  227. Miyamasu M, Misaki Y, Izumi S et al. Glucocorticoids inhibit chemokine generation by human eosinophils. J Allergy Clin Immunol 1998; 101: 75–83.

    PubMed  CAS  Google Scholar 

  228. Shidham VB, Swami VK. Evaluation of apoptotic leukocytes in peripheral blood smears. Arch Pathol Lab Med 2000; 124: 1291–4.

    PubMed  CAS  Google Scholar 

  229. Arai Y, Nakamura Y, Inoue F, Yamamoto K, Saito K, Furusawa S. Glucocorticoid-induced apoptotic pathways in eosinophils: comparison with glucocorticoid-sensitive leukemia cells. Int J Hematol 2000; 71: 340–9.

    PubMed  CAS  Google Scholar 

  230. Nittoh T, Fujimori H, Kozumi Y, Ishihara K, Mue S, Ohuchi K. Effects of glucocorticoids on apoptosis of infiltrated eosinophils and neutrophils in rats. Eur J Pharmacol 1998;354:73–81.

    PubMed  CAS  Google Scholar 

  231. Walsh GM. Mechanisms of human eosinophil survival and apoptosis. Clin Exp Allergy 1997; 27: 482–7.

    PubMed  CAS  Google Scholar 

  232. Adachi T, Motojima S, Hirata A et al. Eosinophil apoptosis caused by theophylline, glucocorticoids, and macrolides after stimulation with IL-5. J Allergy Clin Immunol 1996; 98:S207–15.

    PubMed  CAS  Google Scholar 

  233. Schleimer RP, Bochner BS. The effects of glucocorticoids on human eosinophils. J Allergy Clin Immunol 1994; 94: 1202–13.

    PubMed  CAS  Google Scholar 

  234. Jaye DL, Parkos CA. Neutrophil migration across intestinal epithelium. Ann NY Acad Sci 2000; 915: 151–61.

    Article  PubMed  CAS  Google Scholar 

  235. Kim B, Barnett JL, Kleer CG, Appelman HD. Endoscopic and histological patchiness in treated ulcerative colitis. Am J Gastroenterol 1999; 94: 3258–62.

    PubMed  CAS  Google Scholar 

  236. Bartram CI, Talbot IC. Colonoscopic biopsies in colitis. Abdom Imaging 1995; 20: 384–6.

    PubMed  CAS  Google Scholar 

  237. Mitsuyama K, Toyonaga A, Sasaki E et al. IL-8 as an important chemoattractant for neutrophils in ulcerative colitis and Crohn’s disease. Clin Exp Immunol 1994; 96: 432–6.

    Article  PubMed  CAS  Google Scholar 

  238. Grisham MB, Granger DN. Neutrophil-mediated mucosal injury. Role of reactive oxygen metabolites. Dig Dis Sci 1988; 33: 6S–15S.

    PubMed  CAS  Google Scholar 

  239. Lewis DC, Walker-Smith JA, Phillips AD. Polymorphonuclear neutrophil leucocytes in childhood Crohn’s disease: a morphological study. J Pediatr Gastroenterol Nutr 1987; 6: 430–8.

    Article  PubMed  CAS  Google Scholar 

  240. Kane SP, Vincenti AC. Mucosal enzymes in human inflammatory bowel disease with reference to neutrophil granulocytes as mediators of tissue injury. Clin Sci (Colch) 1979; 57: 295–303.

    PubMed  CAS  Google Scholar 

  241. Fauci AS, Dale DC, Balow JE. Glucocorticosteroid therapy: mechanisms of action and clinical considerations. Ann Intern Med 1976; 84: 304–15.

    PubMed  CAS  Google Scholar 

  242. van der Saag PT, Caldenhoven E, van de Stolpe A. Molecular mechanisms of steroid action: a novel type of cross-talk between glucocorticoids and NF-kappa B transcription factors. Eur Respir J Suppl. 1996; 22: 146–53s.

    Google Scholar 

  243. Wheller SK, Perretti M. Dexamethasone inhibits cytokine-induced intercellular adhesion molecule-1 up-regulation on endothelial cell lines. Eur J Pharmacol 1997; 331: 65–71.

    PubMed  CAS  Google Scholar 

  244. Wissink S, van de Stolpe A, Caldenhoven E, Koenderman L, van der Saag PT. NF-kappa B/Rel family members regulating the ICAM-1 promoter in monocytic THP-1 cells. Immunobiology 1997; 198: 50–64.

    PubMed  CAS  Google Scholar 

  245. Tessier P, Audette M, Cattaruzzi P, McColl SR. Up-regulation by tumor necrosis factor alpha of intercellular adhesion molecule 1 expression and function in synovial fibroblasts and its inhibition by glucocorticoids. Arthritis Rheum 1993; 36:1528–39.

    PubMed  CAS  Google Scholar 

  246. Fattal-German M, Ladurie FL, Cerrina J, Lecerf F, Berrih-Aknin S. Modulation of ICAM-1 expression in human alveolar macrophages in vitro. Eur Respir J 1996; 9: 463–71.

    PubMed  CAS  Google Scholar 

  247. Atsuta J, Plitt J, Bochner BS, Schleimer RP. Inhibition of VCAM-1 expression in human bronchial epithelial cells by glucocorticoids. Am J Respir Cell Mol Biol 1999; 20: 643–50.

    PubMed  CAS  Google Scholar 

  248. Summers RW, Switz DM, Sessions JT, Jr et al. National Cooperative Crohn’s Disease Study: results of drug treatment. Gastroenterology 1979; 77: 847–69.

    PubMed  CAS  Google Scholar 

  249. Jue DM, Jeon KI, Jeong JY. Nuclear factor kappaB (NF-kappaB) pathway as a therapeutic target in rheumatoid arthritis. J Korean Med Sci 1999; 14: 231–8.

    PubMed  CAS  Google Scholar 

  250. MacDermott RP. Progress in understanding the mechanisms of action of 5-aminosalicylic acid. Am J Gastroenterol 2000; 95: 3343–5.

    PubMed  CAS  Google Scholar 

  251. Nikolaus S, Folsch U, Schreiber S. Immunopharmacology of 5-aminosalicylic acid and of glucocorticoids in the therapy of inflammatory bowel disease. Hepatogastroenterology 2000; 47: 71–82.

    PubMed  CAS  Google Scholar 

  252. Wahl C, Liptay S, Adler G, Schmid RM. Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J Clin Invest 1998; 101: 1163–74.

    PubMed  CAS  Google Scholar 

  253. Liptay S, Bachem M, Hacker G, Adler G, Debatin KM, Schmid RM. Inhibition of nuclear factor kappa B and induction of apoptosis in T-lymphocytes by sulfasalazine. BrJ Pharmacol 1999; 128: 1361–9.

    CAS  Google Scholar 

  254. Weber CK, Liptay S, Wirth T, Adler G, Schmid RM. Suppression of NF-kappaB activity by sulfasalazine is mediated by direct inhibition of IkappaB kinases alpha and beta. Gastroenterology 2000; 119: 1209–18.

    PubMed  CAS  Google Scholar 

  255. Munkholm P, Langholz E, Davidsen M, Binder V. Frequency of glucocorticoid resistance and dependency in Crohn’s disease. Gut 1994; 35: 360–2.

    PubMed  CAS  Google Scholar 

  256. Munkholm P, Langholz E, Davidsen M, Binder V. Disease activity courses in a regional cohort of Crohn’s disease patients. Scand J Gastroenterol 1995; 30: 699–706.

    PubMed  CAS  Google Scholar 

  257. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 2000; 49: 497–505.

    PubMed  CAS  Google Scholar 

  258. Fajas L, Auboeuf D, Raspe E et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 1997; 272: 18779–89.

    PubMed  CAS  Google Scholar 

  259. Kliewer SA, Willson TM. The nuclear receptor PPARgamma — bigger than fat. Curr Opin Genet Dev 1998; 8: 576–81.

    PubMed  CAS  Google Scholar 

  260. Kliewer SA, Forman BM, Blumberg B et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 1994;91:7355–9.

    PubMed  CAS  Google Scholar 

  261. Lemberger T, Braissant O, Juge-Aubry C et al. PPAR tissue distribution and interactions with other hormone-signaling pathways. Ann NY Acad Sci 1996; 804: 231–51.

    PubMed  CAS  Google Scholar 

  262. Tontonoz P, Hu E, Graves RA, Budavari Al, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994; 8: 1224–34.

    PubMed  CAS  Google Scholar 

  263. Chinetti G, Griglio S, Antonucci M et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998; 273: 25573–80.

    PubMed  CAS  Google Scholar 

  264. Wiesenberg I, Chiesi M, Missbach M, Spanka C, Pignat W, Carlberg C. Specific activation of the nuclear receptors PPARgamma and RORA by the antidiabetic thiazolidinedione BRL 49653 and the antiarthritic thiazolidinedione derivative CGP 52608. Mol Pharmacol 1998; 53: 1131–8.

    PubMed  CAS  Google Scholar 

  265. Murphy GJ, Holder JC. PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 2000; 21: 469–74.

    PubMed  CAS  Google Scholar 

  266. Fujiwara T, Horikoshi H. Troglitazone and related compounds: therapeutic potential beyond diabetes. Life Sci 2000; 67: 2405–16.

    PubMed  CAS  Google Scholar 

  267. Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47: 507–14.

    PubMed  CAS  Google Scholar 

  268. Berger J, Bailey P, Biswas C et al. Thiazolidinediones produce a conformational change in peroxisomal proliferator-activated receptor-gamma: binding and activation correlate with antidiabetic actions in db/db mice. Endocrinology 1996; 137: 4189–95.

    PubMed  CAS  Google Scholar 

  269. Pershadsingh HA. Pharmacological peroxisome proliferator-activated receptorgamma ligands: emerging clinical indications beyond diabetes. Expert Opin Investig Drugs 1999; 8:1859–72.

    PubMed  CAS  Google Scholar 

  270. Willson TM, Lehmann JM, Kliewer SA. Discovery of ligands for the nuclear peroxisome proliferator-activated receptors. Ann NY Acad Sci 1996; 804: 276–83.

    PubMed  CAS  Google Scholar 

  271. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995; 270: 12953–6.

    PubMed  CAS  Google Scholar 

  272. Willson TM, Wahli W. Peroxisome proliferator-activated receptor agonists. Curr Opin Chem Biol 1997; 1: 235–41.

    PubMed  CAS  Google Scholar 

  273. De Vos P, Lefebvre AM, Miller SG et al Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J Clin Invest 1996; 98: 1004–9.

    PubMed  Google Scholar 

  274. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 1995; 83: 813–19.

    PubMed  CAS  Google Scholar 

  275. Kliewer SA, Sundseth SS, Jones SA et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 1997; 94: 4318–23.

    PubMed  CAS  Google Scholar 

  276. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 1995; 83: 803–12.

    PubMed  CAS  Google Scholar 

  277. Forman BM, Chen J, Evans RM. The peroxisome proliferator-activated receptors: ligands and activators. Ann NY Acad Sci 1996; 804: 266–75.

    PubMed  CAS  Google Scholar 

  278. Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci USA 1997; 94: 4312–17.

    PubMed  CAS  Google Scholar 

  279. Krey G, Braissant O, L’Horset F et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 1997; 11: 779–91.

    PubMed  CAS  Google Scholar 

  280. Urade Y, Ujihara M, Horiguchi Y, Ikai K, Hayaishi O. The major source of endogenous prostaglandin D2 production is likely antigen-presenting cells. Localization of glutathione-requiring prostaglandin D synthetase in histiocytes, dendritic, and Kupffcr cells in various rat tissues. J Immunol 1989; 143:2982–9.

    PubMed  CAS  Google Scholar 

  281. Ricote M, Huang JT, Welch JS, Glass CK. The peroxisome proliferator-activated receptor (PPARgamma) as a regulator of monocyte/macrophage function. J Lcukoc Biol 1999; 66: 733–9.

    CAS  Google Scholar 

  282. Ricote M, Huang J, Fajas L et al. Expression of the peroxisome proliferator-activated receptor gamma (PPAR-gamma) in human atherosclerosis and regulation in macro-phages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci USA 1998; 95: 7614–19.

    PubMed  CAS  Google Scholar 

  283. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391:79–82.

    PubMed  CAS  Google Scholar 

  284. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391: 82–6.

    PubMed  CAS  Google Scholar 

  285. Fajas L, Fruchart JC, Auwerx J. PPARgamma3 mRNA: a distinct PPARgamma mRNA subtype transcribed from an independent promoter. FEBS Lett 1998; 438: 55–60.

    PubMed  CAS  Google Scholar 

  286. DuBois RN, Gupta R, Brockman J, Reddy BS, Krakow SL, Lazar MA. The nuclear eicosanoid receptor, PPARgamma, is aberrantly expressed in colonic cancers. Carcinogenesis 1998; 19:49–53.

    PubMed  CAS  Google Scholar 

  287. Sarraf P, Mueller E, Jones D et al. Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 1998; 4: 1046–52.

    PubMed  CAS  Google Scholar 

  288. Sarraf P, Mueller E, Smith WM et al. Loss-of-function mutations in PPAR gamma associated with human colon cancer. Mol Cell 1999; 3: 799–804.

    PubMed  CAS  Google Scholar 

  289. Saez E, Tontonoz P, Nelson MC et al. Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat Med 1998; 4: 1058–61.

    PubMed  CAS  Google Scholar 

  290. Lefebvre M, Paulweber B, Fajas L et al. Peroxisome proliferator-activated receptor gamma is induced during differentiation of colon epithelium cells. J Endocrinol 1999; 162: 331–40.

    PubMed  CAS  Google Scholar 

  291. Su CG, Wen X, Bailey ST et al. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 1999; 104: 383–9.

    PubMed  CAS  Google Scholar 

  292. Desreumaux P, Dubuquoy L, Nutten S et al. Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies. J Exp Med 2001; 193: 827–38.

    PubMed  CAS  Google Scholar 

  293. Rohn TT, Wong SM, Cotman CW, Cribbs DH. 15-Deoxy-deltal2,14-prostaglandin J2, a specific ligand for peroxisome proliferator-activated receptor-gamma, induces neuronal apoptosis. Neuroreport 2001; 12: 839–3.

    PubMed  CAS  Google Scholar 

  294. Marx J. Cancer research. Anti-inflammatories inhibit cancer growth — but how? Science 2001; 291: 581–2.

    PubMed  CAS  Google Scholar 

  295. Tsubouchi Y, Sano H, Kawahito Y et al. Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. Biochem Biophys Res Commun 2000; 270: 400–5.

    PubMed  CAS  Google Scholar 

  296. Okura T, Nakamura M, Takata Y, Watanabe S, Kitami Y, Hiwada K. Troglitazone induces apoptosis via the p53 and Gadd45 pathway in vascular smooth muscle cells. Eur J Pharmacol 2000; 407: 227–35.

    PubMed  CAS  Google Scholar 

  297. McCarty MF. Activation of PPARgamma may mediate a portion of the anticancer activity of conjugated linoleic acid. Med Hypotheses 2000; 55: 187–8.

    PubMed  CAS  Google Scholar 

  298. Kawahito Y, Kondo M, Tsubouchi Y et al. 15-Deoxydelta(12,14)-PGJ(2) induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. J Clin Invest 2000; 106: 189–97.

    PubMed  CAS  Google Scholar 

  299. Padilla J, Kaur K, Harris SG, Phipps RP. PPAR-gammamediated regulation of normal and malignant B lineage cells. Ann NY Acad Sci 2000; 905: 97–109.

    Article  PubMed  CAS  Google Scholar 

  300. Miller RT, Anderson SP, Corton JC, Cattley RC. Apoptosis, mitosis and cyclophilin-40 expression in regressing peroxisome prolifcrator-induced adenomas. Carcinogenesis 2000; 21:647–52.

    PubMed  CAS  Google Scholar 

  301. Chang TH, Szabo E. Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor gamma in non-small cell lung cancer. Cancer Res 2000; 60: 1129–38.

    PubMed  CAS  Google Scholar 

  302. Wu GD. A nuclear receptor to prevent colon cancer. N Engl J Med 2000; 342:651–3.

    PubMed  CAS  Google Scholar 

  303. Takahashi N, Okumura T, Motomura W, Fujimoto Y, Kawabata I, Kohgo Y. Activation of PPAR gamma inhibits cell growth and induces apoptosis in human gastric cancer cells. FEBS Lett 1999; 455: 135–9.

    PubMed  CAS  Google Scholar 

  304. Kroboth PD, Salek FS, Pittenger AL, Fabian TJ, Frye RF. DHEA and DHEA-S: a review. J Clin Pharmacol 1999; 39:327–48.

    PubMed  CAS  Google Scholar 

  305. Straub RH, Scholmerich J, Zietz B. Replacement therapy with DHEA plus corticosteroids in patients with chronic inflammatory diseases substitutes of adrenal and sex hormones. Z Rheumatol 2000; 59: 108–18.

    Google Scholar 

  306. Poynter ME, Daynes RA. Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappa B signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 1998; 273:32833–41.

    PubMed  CAS  Google Scholar 

  307. Poynter ME, Daynes RA. Age-associated alterations in splenic iNOS regulation: influence of constitutively expressed IFN-gamma and correction following supplementation with PPARα lpha activators or vitamin E. Cell Immunol 1999; 195: 127–36.

    PubMed  CAS  Google Scholar 

  308. Cheng GF, Tseng J. Regulation of murine interleukin-10 production by dehydroepiandrosterone. J Interferon Cytokine Res 2000; 20: 471–8.

    PubMed  Google Scholar 

  309. van Vollenhoven RF, Morabito LM, Engleman EG, McGuire JL. Treatment of systemic lupus erythematosus with dehydroepiandrosterone: 50 patients treated up to 12 months. J Rheumatol 1998; 25: 285–9.

    PubMed  Google Scholar 

  310. van Vollenhoven RF, Engleman EG, McGuire JL. Dehydroepiandrosterone in systemic lupus erythematosus. Results of a double-blind, placebo-controlled, randomized clinical trial. Arthritis Rheum 1995; 38: 1826–31.

    PubMed  Google Scholar 

  311. van Vollenhoven RF, Engleman EG, McGuire JL. An open study of dehydroepiandrosterone in systemic lupus erythematosus. Arthritis Rheum 1994; 37: 1305–10.

    PubMed  Google Scholar 

  312. van Vollenhoven RF, Park JL, Genovese MC, West JP, McGuire JL. A double-blind, placebo-controlled, clinical 301. trial of dehydroepiandrosterone in severe systemic lupus erythematosus. Lupus 1999; 8: 181–7

    PubMed  Google Scholar 

  313. Straub RH, Vogl D, Gross V, Lang B, Scholmerich J, Andus T. Association of humoral markers of inflammation and dehydroepiandrosterone sulfate or cortisol serum levels in patients with chronic inflammatory bowel disease. Am J Gastroenterol 1998; 93: 2197–202.

    PubMed  CAS  Google Scholar 

  314. de la Torre B, Hedman M, Befrits R. Blood and tissue dehydroepiandrosterone sulphate levels and their relation-ship to chronic inflammatory bowel disease. Clin Exp Rheumatol 1998; 16: 579–82.

    PubMed  Google Scholar 

  315. Andus T, Klebl F, Rogler G, Bregenzer N, Scholmerich J, Straub RH. Successful treatment of active Crohn’s disease with oral dehydroepiandrosterone (DHEA): An open controlled pilot trial. Gastroenterology 2001; 120: A1440

    Google Scholar 

  316. Diep QN, Touyz RM, Schiffrin EL. Docosahexaenoic acid, a peroxisome proliferator-activated receptor-alpha ligand, induces apoptosis in vascular smooth muscle cells by stimulation of p38 mitogen-activated protein kinase. Hypertension 2000; 36: 851–5.

    PubMed  CAS  Google Scholar 

  317. Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411: 599–603.

    PubMed  CAS  Google Scholar 

  318. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in N0D2 associated with susceptibility to Crohn’s disease. Nature 2001; 411: 603–6.

    PubMed  CAS  Google Scholar 

  319. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nodl/Apaf-1 family member yhat is restricted to monocytes and activates NF-kappa B. J Biol Chem 2001; 276: 4812–18.

    PubMed  CAS  Google Scholar 

  320. Inohara N, Ogura Y, Chen FF, Muto A, Nunez G. Human nodl confers responsiveness to bacterial lipopolysaccharides. J Biol Chem 2001; 276: 2551–4.

    PubMed  CAS  Google Scholar 

  321. Inohara N, Koseki T, del Peso L et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem 1999; 274: 14560–7.

    PubMed  CAS  Google Scholar 

  322. Lenardo MJ, Baltimore D. NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 1989; 58: 227–9.

    PubMed  CAS  Google Scholar 

  323. Baeuerle PA. The inducible transcription activator NF-kappa B: regulation by distinct protein subunits. Biochim Biophys Acta 1991; 1072: 63–80.

    PubMed  CAS  Google Scholar 

  324. Grilli M, Chiu JJ, Lenardo MJ. NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol 1993; 143: 1–62.

    PubMed  CAS  Google Scholar 

  325. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994; 12: 141–79.

    PubMed  CAS  Google Scholar 

  326. Baeuerle PA, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 1988; 242: 540–6.

    PubMed  CAS  Google Scholar 

  327. Cheng Q, Cant CA, Moll T et al. NK-kappa B subunit-specific regulation of the I kappa B alpha promoter. J Biol Chem 1994; 269: 13551–7.

    PubMed  CAS  Google Scholar 

  328. Huxford T, Malek S, Ghosh G. Structure and mechanism in NF-kappa B/I kappa B signaling. Cold Spring Harb Symp Quant Biol 1999; 64: 533–40.

    PubMed  CAS  Google Scholar 

  329. Muller JM, Ziegler-Heitbrock HW, Baeuerle PA. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiology 1993; 187: 233–56.

    PubMed  CAS  Google Scholar 

  330. Maniatis T. Catalysis by a multiprotein IkappaB kinase complex. Science 1997; 278: 818–19.

    PubMed  CAS  Google Scholar 

  331. Mercurio F, Zhu H, Murray BW et al. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 1997; 278: 860–6.

    PubMed  CAS  Google Scholar 

  332. Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV. IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 1997;278: 866–9.

    PubMed  CAS  Google Scholar 

  333. Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 2000; 12: 85–98.

    PubMed  CAS  Google Scholar 

  334. Neurath MF, Pettersson S, Meyer zum Buschenfelde KH, Strober W. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med 1996; 2: 998–1004.

    PubMed  CAS  Google Scholar 

  335. Conner EM, Brand S, Davis JM et al. Proteasome inhibition attenuates nitric oxide synthase expression, VCAM-1 transcription and the development of chronic colitis. J Pharmacol ExpTher 1997; 282: 1615–22.

    CAS  Google Scholar 

  336. Herfarth H, Brand K, Rath HC, Rogler G, Scholmerich J, Falk W. Nuclear factor-kappa B activity and intestinal inflammation in dextran sulphate sodium (DSS)-induced colitis in mice is suppressed by gliotoxin. Clin Exp Immunol 2000; 120: 59–65.

    PubMed  CAS  Google Scholar 

  337. Jobin C, Hellerbrand C, Licato LL, Brenner DA, Sartor RB. Mediation by NF-kappa B of cytokine induced expression of intercellular adhesion molecule 1 (ICAM-1) in an intestinal epithelial cell line, a process blocked by proteasome inhibitors. Gut 1998; 42: 779–87.

    Article  PubMed  CAS  Google Scholar 

  338. Beutler B, Van Huffel C. An evolutionary and functional approach to the TNF receptor/ligand family. Ann NY Acad Sci 1994; 730: 118–33.

    PubMed  CAS  Google Scholar 

  339. Stevens C, Walz G, Singaram C, et al. Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 expression in inflammatory bowel disease. Dig Dis Sci 1992; 37: 818–26.

    PubMed  CAS  Google Scholar 

  340. MacDonald TT, Hutchings P, Choy MY, Murch S, Cooke A. Tumour necrosis factor-alpha and interferon-gamma production measured at the single cell level in normal and inflamed human intestine. Clin Exp Immunol 1990; 81: 301–5.

    Article  PubMed  CAS  Google Scholar 

  341. Pullman WE, Elsbury S, Kobayashi M, Hapel AJ, Doe WF. Enhanced mucosal cytokine production in inflammatory bowel disease. Gastroenterology 1992; 102: 529–37.

    PubMed  CAS  Google Scholar 

  342. Dinarello CA. The biological properties of interleukin-1. Eur Cytokine Netw 1994; 5: 517–31.

    PubMed  CAS  Google Scholar 

  343. Dinarello CA. Role of pro-and anti-inflammatory cytokines during inflammation: experimental and clinical findings. J Biol Regul Homeost Agents 1997; 11: 91–103.

    PubMed  CAS  Google Scholar 

  344. Youngman KR, Simon PL, West GA et al. Localization of intestinal interleukin 1 activity and protein and gene expression to lamina propria cells. Gastroenterology 1993; 104: 749–58.

    PubMed  CAS  Google Scholar 

  345. Andus T, Daig R, Vogl D et al. Imbalance of the interleukin 1 system in colonic mucosa — association with intestinal inflammation and interleukin 1 receptor antagonist geno type 2. Gut 1997; 41: 651–7.

    Article  PubMed  CAS  Google Scholar 

  346. Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gpl30. Blood 1995; 86: 1243–54.

    PubMed  CAS  Google Scholar 

  347. Kusugami K, Fukatsu A, Tanimoto M et al. Elevation of interleukin-6 in inflammatory bowel disease is macrophage-and epithelial cell-dependent. Dig Dis Sci 1995; 40: 949–59.

    PubMed  CAS  Google Scholar 

  348. Daig R, Andus T, Aschenbrenner E, Falk W, Scholmerich J, Gross V. Increased interleukin 8 expression in the colon mucosa of patients with inflammatory bowel disease. Gut 1996; 38: 216–22.

    PubMed  CAS  Google Scholar 

  349. Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines — CXC and CC chemokines. Adv Immunol 1994; 55: 97–179.

    Article  PubMed  CAS  Google Scholar 

  350. Reinecker HC, Loh EY, Ringler DJ, Mehta A, Rombeau JL, MacDermott RP. Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa. Gastroenterology 1995; 108: 40–50.

    PubMed  CAS  Google Scholar 

  351. Iademarco MF, McQuillan JJ, Rosen GD, Dean DC. Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem 1992; 267: 16323–9.

    PubMed  CAS  Google Scholar 

  352. Neish AS, Williams AJ, Palmer HJ, Whitley MZ, Collins T. Functional analysis of the human vascular cell adhesion molecule 1 promoter. J Exp Med 1992; 176: 1583–93.

    PubMed  CAS  Google Scholar 

  353. Murata T, Kurokawa R, Krones A et al. Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein-Taybi syndrome. Hum Mol Genet 2001; 10: 1071–6.

    PubMed  CAS  Google Scholar 

  354. Papadakis KA, Targan SR. Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu Rev Med 2000; 51: 289–98.

    PubMed  CAS  Google Scholar 

  355. Targan SR. Biology of inflammation in Crohn’s disease: mechanisms of action of anti-TNF-a therapy. Can J Gastroenterol 2000; 14(Suppl. C): 13–16C

    Google Scholar 

  356. Plevy SE, Landers CJ, Prehn J et al. A role for TNF-alpha and mucosal T helper-1 cytokines in the pathogenesis of Crohn’s disease. J Immunol 1997; 159: 6276–82.

    PubMed  CAS  Google Scholar 

  357. Aggarwal BB. Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kappaB. Ann Rheum Dis 2000; 59(Suppl. 1): 16–16.

    Google Scholar 

  358. Darnay BG, Aggarwal BB. Signal transduction by tumour necrosis factor and tumour necrosis factor related ligands and their receptors. Ann Rheum Dis 1999; 58(Suppl. 1): 12–13.

    Google Scholar 

  359. Cao Z, Tanaka M, Regnier C et al. NF-kappa B activation by tumor necrosis factor and interleukin-1. Cold Spring Harb Symp Quant Biol 1999; 64: 473–83.

    PubMed  CAS  Google Scholar 

  360. Chan KF, Siegel MR, Lenardo JM. Signaling by the TNF receptor superfamily and T cell homeostasis. Immunity 2000; 13:419–22.

    PubMed  CAS  Google Scholar 

  361. Gravestein LA, Borst J. Tumor necrosis factor receptor family members in the immune system. Scmin Immunol 1998; 10:423–34.

    CAS  Google Scholar 

  362. Malck NP, Pluempe J, Kubicka S, Manns MP, Trautwcin C. Molecular mechanisms of TNF receptor-mediated signaling. Recent Results Cancer Res 1998; 147: 97–106.

    Google Scholar 

  363. Lorenz HM, Antoni C, Valerius T et al. In vivo blockade of TNF-alpha by intravenous infusion of a chimeric monoclonal TNF-alpha antibody in patients with rheumatoid arthritis. Short term cellular and molecular effects. J Im munol 1996; 156: 1646–53.

    CAS  Google Scholar 

  364. Lorenz HM. TNF inhibitors in the treatment of arthritis. Curr Opin Investig Drugs 2000; 1: 188–93.

    PubMed  CAS  Google Scholar 

  365. Maini RN, Elliott M, Brennan FM, Williams RO, Feldmann M. Targeting TNF alpha for the therapy of rheumatoid arthritis. Clin Exp Rheumatol 1994; 12(Suppl. 11): S63–6.

    PubMed  Google Scholar 

  366. Maini RN, Elliott MJ, Brennan FM et al. Monoclonal anti-TNF alpha antibody as a probe of pathogenesis and therapy of rheumatoid disease. Immunol Rev 1995; 144: 195–223.

    PubMed  CAS  Google Scholar 

  367. Maini RN, Elliott MJ, Brennan FM, Feldmann M. Beneficial effects of tumour necrosis factor-alpha (TNF-alpha) blockade in rheumatoid arthritis (RA). Clin Exp Immunol 1995; 101:207–12.

    PubMed  CAS  Google Scholar 

  368. Maini RN, Elliott M, Brennan FM, Williams RO, Feldmann M. TNF blockade in rheumatoid arthritis: implications for therapy and pathogenesis. Apmis 1997; 105: 257–63.

    Article  PubMed  CAS  Google Scholar 

  369. Maini RN, Taylor PC, Paleolog E et al. Insights into the pathogenesis of rheumatoid arthritis from application of anti-TNF therapy. Nihon Rinsho Meneki Gakkai Kaishi 2000; 23: 487–9.

    PubMed  CAS  Google Scholar 

  370. van Dullemen HM, van Deventer SJ, Hommes DW et al. Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology 1995; 109: 129–35.

    PubMed  Google Scholar 

  371. Lang KA, Peppercorn MA. Promising new agents for the treatment of inflammatory bowel disorders. Drugs RD 1999; 1:237–44.

    CAS  Google Scholar 

  372. Rutgeerts P, Baert F. New strategies in the management of inflammatory bowel disease. Acta Clin Belg 1999; 54: 274–80.

    PubMed  CAS  Google Scholar 

  373. Ricart E, Panaccione R, Loftus EV, Tremaine WJ, Sandborn WJ. Successful management of Crohn’s disease of the ileoanal pouch with infliximab. Gastroenterology 1999; 117:429–32.

    PubMed  CAS  Google Scholar 

  374. Sandborn WJ, Hanauer SB. Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety. Inflamm Bowel Dis 1999; 5: 119–33.

    Article  PubMed  CAS  Google Scholar 

  375. Heresbach D, Semana G, Gosselin M, Bretagne MG. An immunomodulation strategy targeted towards immunocompetent cells or cytokines in inflammatory bowel diseases (IBD). Eur Cytokine Netw 1999; 10: 7–15.

    PubMed  CAS  Google Scholar 

  376. Evans RC, Clarke L, Heath P, Stephens S, Morris Al, Rhodes JM. Treatment of ulcerative colitis with an engineered human anti-TNFalpha antibody CDP571. Aliment Pharmacol Ther 1997; 11: 1031–5.

    PubMed  CAS  Google Scholar 

  377. van Deventer SJ, Camoglio L. Monoclonal antibody therapy of inflammatory bowel disease. Pharm World Sci 1997; 19: 55–9.

    PubMed  Google Scholar 

  378. Schreiber S, Campicri M, Colombel JF et al. Use of anti-tumour necrosis factor agents in inflammatory bowel disease. European guidelines for 2001 2003. Int J Colorcctal Dis 2001; 16:1–11; discussion 12–13.

    CAS  Google Scholar 

  379. Kam LY, Targan SR. TNF-alpha antagonists for the treatment of Crohn’s disease. Expert Opin Pharmacother 2000; 1:615–22.

    PubMed  CAS  Google Scholar 

  380. Mikula CA. Anti-TNF alpha: new therapy for Crohn’s disease. Gastrocntcrol Nurs 1999; 22: 245–8.

    CAS  Google Scholar 

  381. Shanahan F. Anti-TNF therapy for Crohn’s disease: a perspective (infliximab is not the drug we have been waiting for). Inflamm Bowel Dis 2000; 6: 137–39.

    Article  PubMed  CAS  Google Scholar 

  382. Rutgeerts PJ, Targan SR. Introduction: anti-TNF strategies in the treatment of Crohn’s disease. Aliment Pharmacol Ther 1999; 13(Suppl. 4): 1.

    PubMed  Google Scholar 

  383. van Deventer SJ. Anti-TNF antibody treatment of Crohn’s disease. Ann Rheum Dis 1999; 58(Suppl. 1): II14–20.

    Google Scholar 

  384. D’Haens G, Van Deventer S, Van Hogezand R et al. Endoscopic and histological healing with infliximab anti-tumor necrosis factor antibodies in Crohn’s disease: A European multicenter trial. Gastroenterology 1999; 116: 1029–34.

    PubMed  CAS  Google Scholar 

  385. Baert FJ, Rutgeerts PR. Anti-TNF strategies in Crohn’s disease: mechanisms, clinical effects, indications. Int J Colorectal Dis 1999; 14: 47–51.

    PubMed  CAS  Google Scholar 

  386. Hommes DW, van Dullemen HM, Levi M et al. Beneficial effect of treatment with a monoclonal anti-tumor necrosis factor-alpha antibody on markers of coagulation and fibrinolysis in patients with active Crohn’s disease. Haemostasis 1997; 27: 269–77.

    PubMed  CAS  Google Scholar 

  387. van Hogezand RA, Verspaget HW. The future role of anti-tumour necrosis factor-alpha products in the treatment of Crohn’s disease. Drugs 1998; 56: 299–305.

    PubMed  Google Scholar 

  388. van Hogezand RA, Verspaget HW. New therapies for inflammatory bowel disease: an update on chimeric anti-TNF alpha antibodies and IL-10 therapy. Scand J Gastroenterol Suppl. 1997; 223: 105–7.

    PubMed  Google Scholar 

  389. Kimbrell DA, Beutler B. The evolution and genetics of innate immunity. Nat Rev Genet 2001; 2: 256–67.

    PubMed  CAS  Google Scholar 

  390. Daun JM, Fenton MJ. Interleukin-1/Toll receptor family members: receptor structure and signal transduction pathways. J Interferon Cytokine Res 2000; 20: 843–55.

    PubMed  CAS  Google Scholar 

  391. O’Neill L. The Toll/interleukin-1 receptor domain: a molecular switch for inflammation and host defence. Biochem Soc Trans 2000; 28: 557–63.

    PubMed  CAS  Google Scholar 

  392. Imler JL, Hoffmann JA. Toll and Toll-like proteins: an ancient family of receptors signaling infection. Rev Immunogenet 2000; 2: 294–304

    PubMed  CAS  Google Scholar 

  393. Kaisho T, Akira S. Critical roles of Toll-like receptors in host defense. Crit Rev Immunol 2000; 20: 393–405.

    PubMed  CAS  Google Scholar 

  394. Beutler B, Poltorak A. Positional cloning of Lps, and the general role of toll-like receptors in the innate immune response. Eur Cytokine Netw 2000; 11: 143–52.

    PubMed  CAS  Google Scholar 

  395. Means TK, Golenbock DT, Fenton MX The biology of Toll-like receptors. Cytokine Growth Factor Rev 2000; 11: 219–32.

    PubMed  CAS  Google Scholar 

  396. Beutler B. Endotoxin, toll-like receptor 4, and the afferent limb of innate immunity. Curr Opin Microbiol. 2000; 3: 23–8.

    PubMed  CAS  Google Scholar 

  397. Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 2000; 12: 20–6.

    PubMed  CAS  Google Scholar 

  398. Qureshi ST, Gros P, Malo D. The Lps locus: genetic regulation of host responses to bacterial lipopolysaccharide. Inflamm Res 1999; 48: 613–20.

    PubMed  CAS  Google Scholar 

  399. Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–5.

    PubMed  CAS  Google Scholar 

  400. Du X, Poltorak A, Wei Y, Beutler B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 2000; 11: 362–71.

    PubMed  CAS  Google Scholar 

  401. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 1995; 376: 167–70.

    PubMed  CAS  Google Scholar 

  402. Sha WC, Liou HC, Tuomanen El, Baltimore D. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 1995; 80: 321–30.

    PubMed  CAS  Google Scholar 

  403. Xu YX, Pindolia KR, Janakiraman N, Chapman RA, Gautam SC. Curcumin inhibits IL1 alpha and TNF-alpha induction of AP-1 and NF-κB DNA-binding activity in bone marrow stromal cells. Hematopathol Mol Hematol 1997; 11:49–62.

    PubMed  CAS  Google Scholar 

  404. Plummer SM, Holloway KA, Manson MM et al. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 1999; 18: 6013–20.

    PubMed  CAS  Google Scholar 

  405. Pan MH, Lin-Shiau SY, Lin JK. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol 2000; 60: 1665–76.

    PubMed  CAS  Google Scholar 

  406. Kumar A, Dhawan S, Hardegen NJ, Aggarwal BB. Curcumin (Diferuloylmethane) inhibition of tumor necrosis factor (TNF)-mediated adhesion of monocytes to endothelial cells by suppression of cell surface expression of adhesion molecules and of nuclear factor-kappaB activation. Biochem Pharmacol 1998; 55: 775–83.

    PubMed  CAS  Google Scholar 

  407. Jobin C, Bradham CA, Russo MP et al. Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity. J Immunol 1999; 163: 3474–83.

    PubMed  CAS  Google Scholar 

  408. Han SS, Chung ST, Robertson DA, Ranjan D, Bondada S. Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc, bcl-XL, NF-kappa B, and p53. Clin Immunol 1999; 93: 152–61.

    PubMed  CAS  Google Scholar 

  409. Brennan P, O’Neill LA. Inhibition of nuclear factor kappaB by direct modification in whole cells-mechanism of action of nordihydroguaiaritic acid, curcumin and thiol modifiers. Biochem Pharmacol 1998; 55: 965–73.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rogler, G. (2003). Multi-site therapeutic modalities for inflammatory bowel diseases — mechanisms of action. In: Targan, S.R., Shanahan, F., Karp, L.C. (eds) Inflammatory Bowel Disease: From Bench to Bedside. Springer, Boston, MA. https://doi.org/10.1007/0-387-25808-6_26

Download citation

  • DOI: https://doi.org/10.1007/0-387-25808-6_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25807-2

  • Online ISBN: 978-0-387-25808-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics