Skip to main content

A Hierarchical Design Platform for Microelectrofluidic Systems (MEFS)

  • Chapter
Book cover MEMS/NEMS

Abstract

Composite microsystems that incorporate microelectromechanical and microelectrofluidic devices are emerging as the next generation of system-on-a-chip (SOC). Composite microsystems combine microstructures with solid-state electronics to integrate multiple coupled energy domains, e.g., electrical, mechanical, thermal, fluidic, and optical, on an SOC. The combination of microelectronics and microstructures enables the miniaturization and integration of new classes of systems that can be used for environmental sensing, control actuation, electromagnetics, biomedical analyses, agent detection, and precision fluid dispensing. There remain however several roadblocks to rapid and efficient composite system design. Primary among these is the need for modeling, simulation, and design/manufacturing optimization tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Semiconductor Industry Association, International Technology Roadmap for Semiconductors (ITRS), http://public.itrs.net (2001).

    Google Scholar 

  2. Vamsee Pamula, and Krishnendu Chakrabarty, Investigations into Droplet-Based Microelectrofluidic Technology for Hot Spot Cooling and Thermal Management in Integrated Circuits, http://www.ee.duke.edu/krish/cool.html.

    Google Scholar 

  3. Lerch, R.G. et al., A Programmable Mixed-Signal ASIC for Data Acquisition Systems in Medical Implants, in IEEE Int. Conf. Solid-State Circuits, Digest of Technical Papers. 41st ISSCC, 1995, Vol. 357, pp. 162–163.

    Google Scholar 

  4. Davies, B., Robotics in Minimally Invasive Surgery, in IEE Colloquium Through the Keyhole: Microengineering in Minimally Invasive Surgery, 1995, pp. 5/1–5/2.

    Google Scholar 

  5. Fahndrich, M., Hochwind, B., and Zollner, A., Fluid Dynamics in Micro Dosing Actuators, in 8th Int Conf. Solid-State Sensors and Actuators, and Eurosensors IX., 1995, Vol. 2, pp. 295–298.

    Article  Google Scholar 

  6. Menz, W. and Guber, A., Microstructure Technologies and Their Potential in Medical Applications, Minimally Invasive Neurosurgury, 1994;37:21–27.

    CAS  Google Scholar 

  7. Chiou, P.Y. et al., Optical Actuation of Microfluidics Based on Opto-Electrowetting, in Proc. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 2–6 2002, pp. 269–273.

    Google Scholar 

  8. Ohori, T., Shoji, S., Miura, K., and Yotsumoto, A., Partly Disposable Three-Way Microvalve for a Medical Micro Total Analysis System (TAS), Sensors and Actuators A, January 1998;64(1):57–62.

    Article  Google Scholar 

  9. Bourouina, T., Design and Simulation of an Electrostatic Micropump for Drug-Delivery Application, Journal of Micromechanics and Microengineering, 1997;7(3):186–188.

    Article  CAS  Google Scholar 

  10. Pfahler, J., Harley, J., and Bau, H., Liquid Transport in Micro and Submicro Channels, Sensors and Actuators A, 1990;22.

    Google Scholar 

  11. Burns, M.A. et al., An Integrated Nanoliter DNA Analysis Device, Science, 1998;282:484–487.

    Article  CAS  Google Scholar 

  12. Pollack, M., Fair, R.B., and Shenderov, A., Electrowetting-Based Actuation of Liquid Droplets for Microfluidic Applications, Applied Physical Letters, July 2000;77(11):1725–1726.

    Article  CAS  Google Scholar 

  13. Ding, J., Chakrabarty, K., and Fair, R.B., Scheduling of Microfluidic Operations for Reconfigurable Two-Dimensional Electrowetting Arrays, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, December 2001;20:1463–1468.

    Article  Google Scholar 

  14. Jackel, J.L. et al., Electrowetting Switch for Multimode Optical Fibers, Applied Optics, 1999;22(11):1765–1770.

    Google Scholar 

  15. Yates, R. et al., A Micromachined Rotating Yaw Rate Sensor, in Micromachined Devices and components II, SPIE meeting, 1996, pp. 161–168.

    Google Scholar 

  16. Pritsker, A.A.B., Simulation with Visual SLAM and AweSim, John Wiley and Sons, Inc., New York, NY, 1997.

    Google Scholar 

  17. Gomes, F. et al., A High Performance Logical Process Simulation Class Library in C++, in Proc. IEEE Winter Simulation Conference 1995, 1995, pp. 706–713.

    Google Scholar 

  18. Habinc, S. and Sinander, P., Using VHDL for Board Level Simulation, IEEE Design & Test of Computers, 1996;13(3):66–78.

    Article  Google Scholar 

  19. Gajski, D.D. and Kuhn, R.H., Guest Editor’s Introduction: New VLSI Tools, IEEE Computer, 1983;16(12):4–8.

    Google Scholar 

  20. Doebelin, E.O., System Dynamics: Modeling, Analysis, Simulation, Design, Marcel Dekker, Inc., New York, NY, 1998.

    Google Scholar 

  21. Rowell, D. and Wormley, D.N., System Dynamics: An Introduction, Prentice Hall, Upper Saddle River, NJ, 1997.

    Google Scholar 

  22. Ulrich, J. and Zengerle, R., Static and Dynamic Flow Simulation of a KOH-Etched Microvalve Using the Finite-Element Method, Sensors and Actuators A, 1996;53:379–385.

    Article  Google Scholar 

  23. Vu, H.V. and Esfandiari, R.S., Dynamic Systems: Modeling and Analysis, The McGraw-Hill Companies, Inc., New York, NY, 1997.

    Google Scholar 

  24. Zhang, T. et al., Performance Analysis for Microelectrofluidic System Using Hierarchical Modeling and Simulation, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, May 2001;48:482–491.

    Article  Google Scholar 

  25. Zhang, T., Dewey, A., and Fair, R.B., A Hierarchical Approach to Stochastic Discrete and Continuous Performance Simulation using Composable Software Components, Microelectronics Journal, January 2000;31(1):95–104.

    Article  Google Scholar 

  26. Wohlin, C., Nyberg, C., and Larsson, A., Reusable Simulation Models for Performance Analysis of Intelligent Networks, in Proc. Conf. Intelligent Networks and New Technologies, 1996, pp. 143–154.

    Google Scholar 

  27. Fedder, G.K. and Jing, Q., A Hierarchical Circuit-Level Design Methodology for Microelectromechanical Systems, IEEE Transaction on Circuits and Systems II: Analog and Digital Signal Processing, October 1999;46(10):1309–1315.

    Article  Google Scholar 

  28. Orshansky, M., Chen, J., and Chenming, H., A Statistical Performance Simulation Methodology for VLSI Circuits, in Proc. Design and Automation Conference, 1998, pp. 402–407.

    Google Scholar 

  29. Voigt, P., Schrag, G., and Wachutka, G., Microfluidic System Modeling Using VHDL-AMS and Circuit Simulation, Microelectronics Journal, November 1998;29(11):791–797.

    Article  Google Scholar 

  30. Coventor Inc., Conventroware: Architect: Behavior Models, http://www.coventor.com/coventorware/architect/behavioral models.html.

    Google Scholar 

  31. Arnout, G., SystemC Standard, in Proc. Asia South Pacific Design Automation Conference, 2000, pp. 573–577.

    Google Scholar 

  32. Ramanathan, D., Roth, R., and Gupta, R., Interfacing Hardware and Software using C++ Class Libraries, in Proc. Int. Conf. Computer Design, 2000, pp. 445–450.

    Google Scholar 

  33. Liao, S.Y., Towards a New Standard for System-Level Design, in Proc. 8th Int. Workshop on Hardware/Software Codesign, 2000, pp. 2–6.

    Google Scholar 

  34. Schlebusch, H.J., SystemC Based Hardware Synthesis Becomes Reality, in Proc. 26th Int. Euromicro Conference, 2000, vol. 1, p. 434.

    Article  Google Scholar 

  35. Zhang, T., Chakrabarty, K., and Fair, R.B., Integrated Hierarchical Design of Microelectrofluidic Systems Using SystemC, Microelectronics Journal, May 2002;33:459–470.

    Article  CAS  Google Scholar 

  36. Burden, R.L., Numerical Analysis, Prindle, Weber and Schmidt, Boston, MA, 1985.

    Google Scholar 

  37. Zhang, T., Chakrabarty, K., and Fair, R.B., Design of Reconfigurable Composite Microsystems Based on Hardware/Software Co-design Principles, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2002;21:987–995.

    Article  Google Scholar 

  38. Dewey, A., Ren, H., and Zhang, T., Behavior Modeling of Microelectromechanical Systems (MEMS) with Statistical Performance Variability Reduction and Sensitivity Analysis, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2000;47(2):105–113.

    Article  Google Scholar 

  39. Stryer, L., Biochemistry, W. H. Freeman and Company, New York, NY, 4th ed., 1995.

    Google Scholar 

  40. McWhorter, S. and Soper, S.A., Conductivity Detection of Polymerase Chain Reaction Products Separated by Micro-Reversed-Phase Liquid Chromatography, Journal of Chromatography A, June 2000;883(1–2):1–9.

    Article  CAS  Google Scholar 

  41. Schabmueller, C.G.J. et al., Closed Chamber PCR Chips for DNA Amplification, Engineering Science and Education Journal, December 2000;9(6):259–264.

    Article  Google Scholar 

  42. Wire, P.T., http://www.sisweb.com, Scientific Instrument Service, Ringoes, NJ, USA.

    Google Scholar 

  43. Kar, S. et al., Bipolar-Pulsed Technique Solution Conductivity, Analytical Chemistry, 1994;66:2537.

    Article  CAS  Google Scholar 

  44. Swerdlow, H. et al., Fully Automated DNA Reaction and Analysis in a Fluidic Capillary Instrument, Analytical Chemistry, 1997;69(5):848–855.

    Article  CAS  Google Scholar 

  45. Shoji, S., Microfabrication Technologies and Micro Flow Devices for Chemical and Bio-Chemical Micro Flow Systems, in Proc. Int. Conf. Microprocesses and Nanotechnology, 1999, 1999, pp. 72–73.

    Google Scholar 

  46. Zhang, T., Chakrabarty, K., and Fair, R.B., Microelectrofluidic Systems: Modeling and Simulation, CRC Press, Boca Raton, FL, 2002.

    Google Scholar 

  47. Dewey, A. et al., Towards Microfluidic System (MEFS) Computing and Architecture, in Proc. 3rd Int. Conf. Modeling and Simulation of Microsystems (MSM2000), 2000, pp. 142–145.

    Google Scholar 

  48. Lammerink, T.S.J. et al., Modular Concept for Fluid Handling Systems: A Demonstrator Micro Analysis System, in IEEE 9th Annual Int. Workshop on Micro Electro Mechanical Systems, MEMS’ 96, 1996, pp. 389–394.

    Google Scholar 

  49. Rasmussen, A. and Zaghloul, M.E., The Design and Fabrication of Microfluidic Flow Sensors, in Proc. Int. Symposium on Circuits and Systems, 1999, vol. 5, pp. 136–139.

    Google Scholar 

  50. Schwesinger, N., Frank, T., and Wurmus, H., A Modular Microfluid System with an Integrated Micromixer, Journal of Micromechanics and Microengineering, March 1996;6:99–102.

    Article  CAS  Google Scholar 

  51. Kopp, M.U., de Mello, A.J., and Manz, A., Chemical Amplification: Continuous-flow PCR on a Chip, Science, May 1998;280:1046–1048.

    Article  CAS  Google Scholar 

  52. Zengerle, R. et al., A Bidirectional Silicon Micropump, Sensors and Actuators A, 1995;50:81–86.

    Article  Google Scholar 

  53. Washizu, M., Electrostatic Actuation of Liquid Droplets for Micro-Reactor Applications, in IEEE Industry Applications Society Annual Meeting, 1997, pp. 1867–1873.

    Google Scholar 

  54. Lee, J. and Kim, C.-J., Surface-Tension-Driven Microactuation Based on Continuous Electrowetting, J. Microelectromechanical Systems, 2000;2(9):171–180.

    Google Scholar 

  55. Mrcarica, Z. et al., Hierarchical Modeling of Microsystems in an Object-Oriented Hardware Description Language, in Proc. 21st Int. Conf. on Microelectronics (MIEL’97), 1997, pp. 14–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Zhang, T., Chakrabarty, K., Fair, R.B. (2006). A Hierarchical Design Platform for Microelectrofluidic Systems (MEFS). In: Leondes, C.T. (eds) MEMS/NEMS. Springer, Boston, MA. https://doi.org/10.1007/0-387-25786-1_7

Download citation

Publish with us

Policies and ethics