Skip to main content

Techniques in Proper Orthogonal Decomposition and Component Mode Synthesis for the Dynamic Simulation of Complex MEMS Devices and Their Applications

  • Chapter
MEMS/NEMS

Abstract

The modelling and simulation of microelectromechanical systems (MEMS) devices are usually described by coupled nonlinear partial differential equations (PDEs). Traditional fully meshed models, such as finite element method (FEM) or finite difference method (FDM), can be used for explicit dynamic simulations of nonlinear PDEs. However, time-dependent FEM or FDM is usually computationally very intensive and time consuming when a large number of simulations are needed, especially when multiple or structurally complex devices are present in the systems. In order to perform rapid design verification and optimisation of MEMS devices, it is essential to generate low-order dynamic models that permit fast simulation while capturing most of the accuracy and flexibility of the fully meshed model simulations. These low-order models, generated by making use of model order reduction techniques, are called reduced-order models or macromodels [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Senturia, S.D., CAD Challenges for Microsensors, Microactuators, and Microsystems, Proc. IEEE, 1998, Vol. 86, pp. 1611–1626.

    Article  Google Scholar 

  2. Tilmans, H.A.C., Equivalent Circuit Representation of Electromechanical Transducers I. Lumped-Parameter Systems, J. Micromech. Microeng., 1996;6:157–176.

    Article  Google Scholar 

  3. Anathasuresh, G.K., Gupta, R.K., and Senturia, S.D., AnApproach to Macromodelling of MEMS for Nonlinear Dynamic Simulation, Microelectromechanical Systems (MEMS), ASME, DSC, 1996;59:401–407.

    Google Scholar 

  4. Wang, F. and White, J., Automatic Model Order Reduction of a Microdevice Using the Arnoldi Approach, Microelectromechanical Systems (MEMS), ASME, DSC, 1998;66:527–530.

    Google Scholar 

  5. Hung, E.S. and Senturia, S.D., Generating Efficient Dynamical Models for Microelectromechanical Systems from a Few Finite-Element Simulation Runs, J. Microelectromech. Syst., 1999;8:280–289.

    Article  Google Scholar 

  6. Lin, W.Z., Lee, K.H., Lim, S.P., and Lu, P., A Model Reduction Method for the Dynamic Analysis of Microelectromechanical Systems, Int. J. Nonlinear Sci., 2001;2:89–100.

    Google Scholar 

  7. Liang, Y.C., Lin, W.Z., Lee, H.P., Lim, S.P., Lee, K.H., and Feng, D.P., A Neural-Network-Based Method of Model Reduction for the Dynamic Simulation of MEMS, J. Micromech. Microeng., 2001;11:226–233.

    Article  CAS  Google Scholar 

  8. Holmes, P., Lumley, J., and Kerkooz, G., Turbulence, Coherent Structures, Dynamic Systems and Symmetry, Cambridge University Press, 1996.

    Google Scholar 

  9. Thomson, W.T. and Dahleh, M.D., Theory of Vibration with Applications, 5th ed., Prentice Hall, 1998.

    Google Scholar 

  10. Hurty, W.C., Dynamic Analysis of Structural Systems Using Component Modes, AIAA 1965;3:678–685.

    Google Scholar 

  11. Karhunen, K., Zur Spektraltheorie Stochastischer Prozesse, Ann. Acad. Sci. Fennicae, 1946;37.

    Google Scholar 

  12. Loève, M.M., Probability Theory, Princeton NJ, Von Nostrand, 1955.

    Google Scholar 

  13. Kirby, M., Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction and the Study of Patterns, New York, Wiley, 2001.

    Google Scholar 

  14. Reed, I.S. and Lan, L.S., A Fast Approximate Karhunen-Loève Transform (AKLT) for Data Compression, Journal of Visual Communication and Image Representation, 1994;5:304–316.

    Article  Google Scholar 

  15. Fukunaga, K., Introduction to Statistical Pattern Recognition, Boston, Academic Press, 1990.

    Google Scholar 

  16. Feldmann, U., Kreuzer, E., and Pinto, F., Dynamic Diagnosis of Railway Tracks by Means of the Karhunen-Loève transformation, Nonlinear Dynamics, 2000;22:193–203.

    Article  Google Scholar 

  17. Baker, J. and Christofides, P.D., Finite-Dimensional Approximation and Control of Non-Linear Parabolic PDE Systems, International Journal of Control, 2000;73:439–456.

    Article  Google Scholar 

  18. Hozic, M. and Stefanovska, A., Karhunen-Loève Decomposition of Peripheral Blood Flow Signal, Physica A, 2000;280:587–601.

    Article  Google Scholar 

  19. Azeez, M.F.A. and Vakakis, A.F., Proper Orthogonal Decomposition (POD) of a Class of Vibroimpact Oscillations, Journal of Sound and Vibration, 2001;240:859–889.

    Article  Google Scholar 

  20. Ma, X.H. and Vakakis, A.F., Karhunen-Loève Decomposition of the Transient Dynamics of a Multibay Truss. AIAA Journal, 1999;37:939–946.

    Article  Google Scholar 

  21. Sirovich, L., Turbulence and the Dynamics of Coherent Structures Part I–III: Coherent Structures, Quart. App. Math., 1987;XLV:561–571, 573–582, 583–590.

    Google Scholar 

  22. Kowalski, M.E. and Jin, J.M., Model-Order Reduction of Nonlinear Models of Electromagnetic Phased-Array Hyperthermia, IEEE T. Biomed. Eng., 2003;50:1243–1254.

    Article  Google Scholar 

  23. Lin, W.Z., Lee, K.H., Lim, S.P., and Liang, Y.C., Proper Orthogonal Decomposition and Component Mode Synthesis in Macromodel Generation for the Dynamic Simulation of a Complex MEMS Device, J. Micromech. Microeng., 2003;13:646–654.

    Article  Google Scholar 

  24. Gupta, R.K. and Senturia, S.D., Pull-in Time Dynamics as A Measure of Absolute Pressure, in Proc. MEMS, 1997, pp. 290–294.

    Google Scholar 

  25. Hamrock, B.J., Fundamentals of Fluid Lubrication, New York, McGraw-Hill, 1994.

    Google Scholar 

  26. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in Fortran: The Art of Scientific Computing, Cambridge, Cambridge University Press, 1992.

    Google Scholar 

  27. Gabbay, L.D., Mehner, J.E., and Senturia, S.D., Computer-Aided Generation of Nonlinear Reduced-Order Dynamic Macromodels–I: Non-Stress-Stiffened Case, Journal of Microelectromechanical Systems, 2000;9:262–269.

    Article  Google Scholar 

  28. Lin, W.Z., Liang, Y.C., Lee, K.H., Lim, S.P., and Lee, H.P., Computation Speedup in the Dynamic Simulation of MEMS by Macromodel, Progress in Natural Science, 2003;13:219–227.

    Article  Google Scholar 

  29. Osterberg, P.M. and Senturia, S.D., M-TEST: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures, Journal of Micromechanics and Microengineering, 1997;6:107–118.

    Google Scholar 

  30. Min, Y.H. and Kim, Y.K., Modeling, Design, Fabrication and Measurement of a Single Layer Polysilicon Micromirror with Initial Curvature Compensation, Sensors and Actuators, 1999;78:8–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Lin, W.Z., Lim, S.P., Liang, Y.C. (2006). Techniques in Proper Orthogonal Decomposition and Component Mode Synthesis for the Dynamic Simulation of Complex MEMS Devices and Their Applications. In: Leondes, C.T. (eds) MEMS/NEMS. Springer, Boston, MA. https://doi.org/10.1007/0-387-25786-1_4

Download citation

Publish with us

Policies and ethics