Skip to main content

Single-Crystal Silicon Based Electrothermal MEMS Mirrors for Biomedical Imaging Applications

  • Chapter
MEMS/NEMS

Abstract

Micromirrors have extensive applications in optical switches, displays and many other areas. This chapter is dedicated to introducing a new class of single-crystal silicon (SCS) based micromirrors for biomedical imaging applications particularly for optical coherence tomography (OCT). The SCS micromirrors include one-dimensional (1-D) and two-dimensional (2-D) scanning micromirrors and large-vertical-displacement (LVD) phase-only micromirrors. All the 1-D and 2-D micromirrors are 1 mm by 1 mm in size and coated with aluminum for high reflectivity in broad band. All the micromirrors have flat surface due to the thick SCS supporting layer. The measured static rotation angles are more than 30° at less than 15-V drive voltages, and the resonant frequencies are in order of 1 kHz. A large 200-µm static piston motion has been achieved with the LVD micromirror which has a size of only 0.7 mm by 0.32 mm. Design, simulation, modeling, fabrication and experimental results of these thermally-actuated devices are discussed in detail in this chapter. This first section will introduce the operation of OCT and various existing MEMS mirror techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cancer Facts and Figures 2003, American Cancer Society, Atlanta, GA, http://www.cancer.org.

    Google Scholar 

  2. Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., and Fujimoto, J.G., Optical Coherence Tomography, Science, 1991;254:1178–1181.

    Article  CAS  Google Scholar 

  3. Bouma, B.E. and Tearney, G.J., The Handbook of Optical Coherence Tomography, Marcel Dekker, Inc., New York, 2002.

    Google Scholar 

  4. Jang, I.-K., Tearney, G., and Bouma, B., Visualization of Tissue Prolapse between Coronary Stent Struts by Optical Coherence Tomography: Comparison with Intravascular Ultrasound, Circulation, 2001;104:2754.

    Article  CAS  Google Scholar 

  5. Backman, V., Perelman, L.T., Arendt, J.T., Gurjar, R., Muller, M.G., Zhang, Q., Zonios, G., Kline, E., McGillican, T., Valdez, T., Van Dam, J., Wallace, M., Badizadegan, K., Crawford, J.M., Fitzmaurice, M., Kabani, S., Levin, H.S., Seiler, M., Dasari, R.R., Itzkan, I., and Feld, M.S., Detection of Preinvasive Cancer Cells In Situ, Nature, 2000;406:35–36.

    Article  CAS  Google Scholar 

  6. Izatt, J.A., Hee, M.R., Owen, G.A., Swanson, E.A., and Fujimoto, J.G., Optical Coherence Microscopy in Scattering Media, Optics Letters, 1994;19:590–592.

    Article  CAS  Google Scholar 

  7. Schmitt, J., Yadlowsky, M., and Bonner, R., Subsurface Imaging of Living Skin with Optical Coherence Microscopy, Dermatology, 1995;191:93–98.

    Article  CAS  Google Scholar 

  8. Tearney, G.J., Brezinski, M.E., Bouma, B.E., Boppart, S.A., Pitris, C., Southern, J.F., and Fujimoto, J.G., In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography, Science, 1997;276:2037–2039.

    Article  CAS  Google Scholar 

  9. Sergeev, A.M. et al., In Vivo Endoscopic OCT Imaging of Precancer and Cancer States of Human Mucosa, Optics Express, 1997;1:432–440.

    Article  CAS  Google Scholar 

  10. Feldchtein, F.I., Gelikonov, V.M., Iksanov, R.R., Gelikonov, G.V., Kuranov, R.V., Sergeev, A.M., Gladkova, N., Ourutina, M.N., Reitze, D.H., and Warren, J.A., In Vivo OCT Imaging of Hard and Soft Tissue of the Oral Cavity, Optics Express, 1998;3:239–250.

    CAS  Google Scholar 

  11. Pitris, C., Brezinski, M.E., Bouma, B.E., Tearney, G.J., Southern, J.F., and Fujimoto, J.G., High Resolution Imaging of the Upper Respiratory Tract with Optical Coherence Tomography: A Feasibility Study, American Journal Of Respiratory And Critical Care Medicine, 1998;157:1640–1644.

    CAS  Google Scholar 

  12. Rollins, A.M. and Izatt, J.A., Reference Optical Delay Scanning, in B.E. Bouma and G.J. Tearney (Eds.), The Handbook of Optical Coherence Tomography, Marcel Dekker, Inc., New York, 2002.

    Google Scholar 

  13. Bustillo, J.M., Howe, R.T., and Muller, R.S., Surface Micromachining for Microelectromechanical Systems, Proceedings of the IEEE, 1998;86(8):1552–1574.

    Article  CAS  Google Scholar 

  14. Kovacs, G.T.A., Maluf, N.I., and Petersen, K.E., Bulk Micromachining of Silicon, Proceedings of the IEEE, 1998;86(8):1536–1551.

    Article  CAS  Google Scholar 

  15. Hornbeck, L.J., Digital Light Processing and MEMS: An Overview, Technical Digest IEEE/LEOS 1996 Summer Topical Meetings, Keystone, CO; Aug. 5–9 1996, pp. 7–8.

    Google Scholar 

  16. Apte, R.B., Sandejas, F.S.A., Banyai, W.C., and Bloom, D.M., Deformable Grating Light Valves for High Resolution Displays, Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, June 1994, pp. 1–6.

    Google Scholar 

  17. Aksyuk, V.A., Pardo, F., Bolle, C.A., Arney, S., Giles, C.R., and Bishop, D.J., Lucent Microstar Micromirror Array Technology for Large Optical Crossconnects, Proceedings of the SPIE, Santa Clara, CA, Sept. 18–20, 2000, Vol. 4178, pp. 320–324.

    Article  Google Scholar 

  18. Conant, R., Nee, J., Lau, K., and Muller, R., A Flat High-frequency Scanning Micromirror, Technical Digest of the 2000 Solid-State Sensor & Actuator Workshop, Hilton Head, SC, USA, Jun. 2–6, 1996, pp. 6–9.

    Google Scholar 

  19. Xie, H., Pan, Y., and Fedder, G.K., A CMOS-MEMS Mirror with Curled-hinge Comb Drive, Journal of Microelectromechanical Systems, 2003;12(4):450–457.

    Article  Google Scholar 

  20. Patterson, P.R., Dooyoung, H., Hung, N., Toshiyoshi, H., Chao, R., and Wu, M.C., A Scanning Micromirror with Angular Comb Drive Actuation, Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2002), pp. 544–547.

    Google Scholar 

  21. Krishnamoorthy, U., Lee, D., and Solgaard, O., Self-alignedVertical Electrostatic Combdrives for Micromirror Actuation, Journal of Microelectromechanical Systems, 2003;12:458–464.

    Article  Google Scholar 

  22. Milanovic, V., Last, M., and Pister, K.S.J., Laterally Actuated Torsional Micromirrors for Large Static Deflection, IEEE Photonics Technology Letters, 2003;15:245–247.

    Article  Google Scholar 

  23. Milanovic, V., Mathus, G.A., and McCormick, D.T., Gimbal-less Monolithic Silicon Actuators for Tip-tiltpiston Micromirror Applications, IEEE Journal of Selected Topics in Quantum Electronics, 2004;10(3):462–471.

    Article  CAS  Google Scholar 

  24. Kim, J. and Lin, L., Batch-fabricated Scanning Micromirrors Using Localized Plastic Deformation of Silicon, Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2004), Maastricht, The Netherlands, Jan. 25–29, 2004, pp. 494–497.

    Google Scholar 

  25. Bühler, J., Funk, J., Paul, O., Steiner, F.-P, and Baltes, H., Thermally Actuated CMOS Micromirrors, Sensors and Actuators A, 1995;46–47:572–575.

    Article  Google Scholar 

  26. Lammel, G., Schweizer, S., and Renaud, P., Optical Microscanners and Microspectrometers Using Thermal Bimorph Actuators, Kluwer Academic, 2002.

    Google Scholar 

  27. Xie, H., Pan, Y., and Fedder, G.K., Endoscopic Optical Coherence Tomography Imaging with aCMOS-MEMS Micromirror, Sensors and Actuators A, 2003;103:237–241.

    Article  Google Scholar 

  28. Buser, R., de Rooij, N.F., Tischauser, H., Dommann, A., and Staufert, G., Biaxial Scanning Mirror Activated by Bimorph Structures for Medical Applications, Sensors & Actuators A, 1992;31:29–34.

    Article  Google Scholar 

  29. Schweizer, S., Calmes, S., Laudon, M., and Renaud, Ph., Thermally Actuated Optical Microscanner with Large Angle and Low Consumption, Sensors & Actuators A, 1999;706:470–477.

    Article  Google Scholar 

  30. Sinclair, M., A High Frequency Resonant Scanner Using Thermal Actuation, Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS’02), Jan. 2002, pp. 698–701.

    Google Scholar 

  31. Judy, J.W. and Muller, R.S., Magnetically Actuated, Addressable Microstructures, Journal of Microelectromechanical Systems, 1997;6:249–256.

    Article  Google Scholar 

  32. Cho, I.-J., Yun, K.-S. Lee, H.-K., Yoon, J.-B., and Yoon, E., A Low-voltage Two-axis Electromagnetically Actuated Micromirror with Bulk Silicon Mirror Plates and Torsion Bars, Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS’02), Jan. 2002, pp. 540–543.

    Google Scholar 

  33. Bernstein, J., Taylor, W.P., Brazzle, J., Kirkos, G., Odhner, J., Pareek, A., and Zai, M., Two Axis-of-rotation Mirror Array Using Electromagnetic MEMS, Proceedings of the 16th IEEE International Conference on Micro Electro Mechanical Systems (MEMS’03), Kyoto, Jan. 2003, pp. 275–278.

    Google Scholar 

  34. Miller, R.A. and Tai, Y.-C., Micromachined Electromagnetic Scanning Mirrors, Optical Engineering, 1997;36:1399–1407.

    Article  CAS  Google Scholar 

  35. Kikuchi, N., Haga, Y., Maeda, M., Makishi, W., and Esashi, M., Piezolectric 2-D Micro Scanner for Minimally Invasive Therapy Fabricated Using Femtosecond Laser Ablation, Proceedings of the 12th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS’03), June 8–12, 2003, pp. 603–606.

    Google Scholar 

  36. Kawabata, T., Ikeda, M., Goto, H., Matsumoto, M., and Yada, T., The 2-Dimensional Micro Scanner Integrated with PZT Thin Film Actuator, Transducers’ 97, Chicago, Jun 1997, pp. 339–342.

    Google Scholar 

  37. Kim, S.J., Cho, Y.H., Nam, H.J., and Bu, J.U., Piezoelectrically Pushed Rotational Micromirrors for Wideangle Optical Switch Applications, Proceedings of the 16th IEEE International Conference on Micro Electro Mechanical Systems (MEMS’03), Kyoto, Jan. 2003, pp. 263–266.

    Google Scholar 

  38. Helmbrecht, M.A., Srinivasan, U., Rembe, C., Howe, R.T., and Muller, R.S., Micromirrors for Adaptive-Optics Arrays, Technical Digest of the 11th International Conference on Solid State Sensors and Actuators (Transducers’ 01), Munich, Germany, June 10–14, 2001.

    Google Scholar 

  39. Lee, A.P., McConaghy, C.F., Sommargren, G., Krulevitch, P., and E.W. Campbell, Vertical-Actuated Electrostatic Comb Drive with In Situ Capacitive Position Correction for Application in Phase Shifting Diffraction Interferometry, Journal of Microelectromechanical Systems, 2003;12:960–971.

    Article  Google Scholar 

  40. Chung, S.-W. and Kim, Y.-K., Design and Fabrication of 10 × 10 Micro-spatial Light Modulator Array for Phase and Amplitude Modulation, Sensors and Actuators A, 1999;78:63–70.

    Article  Google Scholar 

  41. Cugat, O., Mounaix, P., Basrour, S., Divoux, C., and Reyne, G., Deformable Magnetic Mirror for Adaptive Optics: First Results, Proceedings of the 13th IEEE Annual International Conference on Micro Electro Mechanical Systems (MEMS 2000), Miyazaki, Japan, Jan 2000, pp. 485–490.

    Google Scholar 

  42. Yee, Y., Nam, H.-J., Lee, S.-H., Bu, J.U., Jeon, Y.-S., and Cho, S.-M., PZT Actuated Micromirror for Nanotracking of Laser Beam for High-density Optical Data Storage, Proceedings of the 13th Annual International Conference on Micro Electro Mechanical Systems (MEMS 2000), Jan. 23–27, 2000, pp. 435–440.

    Google Scholar 

  43. Tuantranont, A., Liew, L.-A., Bright, V.M., Zhang, W., and Lee, Y.C., Phase-only Micromirror Array Fabricated by Standard CMOS Process, Sensors and Actuators A, 2001;89:124–134.

    Article  Google Scholar 

  44. Wan, Z.-L., Feinerman, A., Zeng, H.-J., and Friedman, G., Electrocapillary Piston Motion and a Prototype of Phase-Manipulating Micromirror, Journal of Microelectromechanical Systems, 2004;13:620–627.

    Article  Google Scholar 

  45. Jain, A., Qu, H., Todd, S., Fedder, G.K., and Xie, H., Electrothermal SCS Micromirror with Largevertical-displacement Actuation, Technical Digest of the 2004 Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Isl., SC, June 2004, pp. 228–231.

    Google Scholar 

  46. Pan, Y., Xie, H., and Fedder, G.K., Endoscopic Optical Coherence Tomography Based on a Microelectromechanical Mirror, Optics Letters, 2001, Vol. 26, pp. 1966–1968.

    Article  CAS  Google Scholar 

  47. Zara, J.M., Izatt, J.A., Divakara Rao, K., Yazdanfar, S., and Smith, S.W., Scanning Mirror for Optical Coherence Tomography Using an Electrostatic MEMS Actuator, Proceedings of the 2002 IEEE International Symposium on Biomedical Imaging, July 7–10, 2002, pp. 297–300.

    Google Scholar 

  48. Qi, B., Himmer, A.P., Gordon, L.M., Yang, X.D., Dickensheets, L.D., and Vitkin, I.A., Dynamic Focus Control in High-speed Optical Coherence Tomography Based on a Microelectromechanical Mirror, Optics Communications, 2004, Vol. 232, pp. 123–128.

    Article  CAS  Google Scholar 

  49. Tran, P.H., Mukai, D.S., Brenner, M., and Chen, Z., In vivo Endoscopic Optical Coherence Tomography by Use of a Rotational Microelectromechanical System Probe, Optics Letters, 2004, Vol. 29, No. 11, pp. 1236–1238.

    Article  Google Scholar 

  50. Bühler, J., Deformable Micromirror Arrays by CMOS Technology, Ph.D. Thesis, The Swiss Federal Institute of Technology, 1997.

    Google Scholar 

  51. Villarceau, A.-J., Recherches sur le mouvement et la compensation des chronometres, Annales de l’Observatoire imperial de Paris, 1863.

    Google Scholar 

  52. Peng, W., Xiao, Z., and Farmer, K.R., Optimization of Thermally Actuated Bimorph Cantilevers for Maximum Deflection, Nanotech 2003;376–379.

    Google Scholar 

  53. Xie, H., Erdmann, L., Zhu, X., Gabriel, K., and Fedder, G.K., Post-CMOS Processing for High-aspect-ratio Integrated Silicon Microstructures, Journal of Microelectromechanical Systems, 2002;11:93–101.

    Article  CAS  Google Scholar 

  54. Senturia, S.D., Microsystem Design, Kluwer Academic Publishers, Boston, 2001.

    Google Scholar 

  55. Lakdawala, H. and Fedder, G., Temperature Control of CMOS Micromachined Sensors, Technical Digest of the 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS’ 02), Las Vegas, NV, USA, January 20–24, 2002, pp. 324–327.

    Google Scholar 

  56. Manginell, R.P., Polycrystalline-Silicon Microbridge Combustible Gas Sensor, Ph.D. Dissertation, University of New Mexico, 1997.

    Google Scholar 

  57. Incropera, F. and DeWitt, D., Fundamentals of Heat and Mass Transfer, Wiley, 1996.

    Google Scholar 

  58. Marc J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, Second Edition, CRC Press, 2002.

    Google Scholar 

  59. www.memsnet.org/material/.

    Google Scholar 

  60. CoventorWare 2003 Reference Manual, Coventor, Inc., Cary, NC, http://www.coventor.com.

    Google Scholar 

  61. Xie, H. and Fedder, G.K., Fabrication, Characterization, and Analysis of a DRIE CMOS-MEMS Gyroscope, IEEE Sensors Journal, Oct. 2003;3(5):622–631.

    Article  Google Scholar 

  62. Qu, H., Fang, D., Sadat, A., Yuan, J., and Xie, H., High-Resolution Integrated Micro Gyroscope for Space Applications, The 41st Space Congress, Cape Canaveral, Florida, April 27–30, 2004.

    Google Scholar 

  63. Qu, H., Fang, D., and Xie, H., Single-Crystal Silicon Based 3-axis CMOS-MEMS Integrated Accelerometer, The 3rd IEEE Conference on Sensors, Vienna, Austria, Oct. 24–27, 2004.

    Google Scholar 

  64. Xie, H., Pan, Y., and Fedder, G.K., ASCS Micromirror for Optical Coherence Tomographic Imaging, Technical Digest of the 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS’ 02), Las Vegas, Nevada, USA, January 20–24, 2002, pp. 495–499.

    Google Scholar 

  65. Jain, A., Todd, S.T., Fedder, G.K., and Xie, H., A Large-Scanning-Angle, Electrothermal SCS Micromirror for Biomedical Imaging, 2003 OSA Annual Meeting, Tuscon, AZ, October 2003.

    Google Scholar 

  66. Xie, H., Jain, A., Xie, T., Pan, Y., and Fedder, G.K., A Single-crystal Silicon-Based Micromirror with Large Scanning Angle for Biomedical Applications, Technical Digest of the Conference on Lasers and Electro-Optics (CLEO 2003), Baltimore, Maryland, June 1–6, 2003.

    Google Scholar 

  67. Schenk, H., Durr, P., Kunze, D., Lakner, H., and Kuck, H., An Electrostatically Excited 2D-micro-scanningmirror with an In-plane Configuration of the Driving Electrodes, Technical Digest of the 13th IEEE Annual International Conference on Micro Electro Mechanical Systems (MEMS 2000), Jan 2000, pp. 473–478.

    Google Scholar 

  68. Kwon, S., Milanovic, V., and Lee, L.P., A High Aspect Ratio 2-D Gimbaled Microscanner with Large Static Rotation, Technical Digest of the 2002 IEEE/LEOS International Conference on Optical MEMS, 2002, pp. 149–150.

    Google Scholar 

  69. Piyawattanametha, W., Patterson, P.R., Hah, D., Toshiyoshi, H., and Wu, M.C., A 2-D Scanner by Surface and Bulk Micromachined Angular Vertical Comb Actuators, Technical Digest of the 2003 IEEE/LEOS International Conference on Optical MEMS, Waikoloa, Hawaii, Aug. 2003, pp. 93–94.

    Google Scholar 

  70. Su, G.-D., Toshiyoshi, H., and Wu, M.C., Surface-micromachined 2-D Optical Scanners with Highperformance Single-crystalline Silicon Micromirrors, IEEE Photonics Technology Letters, 2001;13:606–608.

    Article  Google Scholar 

  71. Jain, A., Xie, T., Pan, Y., Fedder, G.K., and Xie, H., A Two-Axis SCS Electrothermal Micromirror for Biomedical Imaging, Technical Digest of the 2003 IEEE/LEOS International Conference on Optical MEMS, Waikoloa, Hawaii, August 2003.

    Google Scholar 

  72. Jain, A., Kopa, A., Pan, Y., Fedder, G.K., and Xie, H., A Two-Axis Electrothermal Micromirror for Endoscopic Optical Coherence Tomography, IEEE Journal of Selected Topics in Quantum Electronics, 2004;10(3):636–642.

    Article  CAS  Google Scholar 

  73. Kopa, A., Jain, A., and Xie, H., Laser Scanning Display Using a 2-D Micromirror, Optics in the Southeast (OISE) 2003, Orlando, FL November 2003.

    Google Scholar 

  74. Jain, A., Todd, S., and Xie, H., An Electrothermally-actuated, Dual-mode Micromirror for Large bidirectional Scanning, Technical Digest of the 2004 IEEE International Electron Devices Meeting (IEDM 2004), San Francisco, CA, December 13–15, 2004, pp. 47–50.

    Google Scholar 

  75. Todd, S.T., Electrothermomechanical Modeling of a 1-D Electrothermal MEMS Micromirror, M.S. Thesis, University of Florida, 2005.

    Google Scholar 

  76. Todd, S. and Xie, H., An Analytical Electrothermal Model of a 1-D Electrothermal MEMS Micromirror, Proceedings of the SPIE: International Symposium on Smart Materials, Nano-, and Micro-Smart Systems, 2004, Vol. 5649, pp. 344–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Xie, H., Todd, S., Jain, A., Fedder, G.K. (2006). Single-Crystal Silicon Based Electrothermal MEMS Mirrors for Biomedical Imaging Applications. In: Leondes, C.T. (eds) MEMS/NEMS. Springer, Boston, MA. https://doi.org/10.1007/0-387-25786-1_36

Download citation

Publish with us

Policies and ethics