Skip to main content

Techniques in Sonophoresis Biomedical Devices and Their Applications

  • Chapter
MEMS/NEMS
  • 7304 Accesses

Abstract

Humans have always attempted to improve their health by ingesting or administering drugs. Examples appear throughout written history, from very continent and culture. Although thousands upon thousands of drugs had been developed, there are still many illnesses that remain unsolved, such as cancer and diabetes. During the 20th century, drug discovery frequently resulted from empiricism and it happens that as technology advanced particularly after 1970, the method of drug delivery and drug production became increasing complicated and rational [1]. New technology and biological insight have led to new class of therapeutic agents. A revolution in drug development is already upon us. More and more complex agents, such as antibodies and gene-based drugs, are emerging as clinically viable entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salesman, W.M., Drug Delivery: Engineering Principle for Drug Therapy, Oxford University Press, New York, 2001.

    Google Scholar 

  2. InParm.com, The Application of Novel Drug Delivery Systems, http//:www.inpharm.com/-intelligence/cmr020401.htm (12 May 2002).

    Google Scholar 

  3. Santini, Jr. J.T., Richards, A.C., Scheidt, R.M., Cima, J., and Langer R., Microchips as Controlled Drugdelivery Devices, Angewandte Chemie International Edition, 2000;39:2397–2407.

    Article  Google Scholar 

  4. Health Hormones, Transdermal Delivery and the Powerful Role it Plays with many Natural Supplements. http://www.healthyhormones.com/trans.htm (21 March 2004).

    Google Scholar 

  5. David, J. and Cheeke, N., Fundamentals and Applications of Ultrasonic Waves, CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida, 2002.

    Google Scholar 

  6. Ensminger, D., Ultrasonic: Fundamentals, Technology, Applications, Marcel Dekker Inc., New York, 1988.

    Google Scholar 

  7. Berlincourt, D.A., Curran, D.R., and Jaffe, H., Piezoelectric and Piezomagnetic Materials and Their Function in Transducers, in W.P. Mason (Ed.), Physical Acoustics: Principles and Methods, Academic Press, New York, 1964, pp. 169–270.

    Google Scholar 

  8. The Piezoelectric Effect in a Cylinder of PZT Material, http://www.apc.thomasregister.com/olc/0’3482007notes1.htm (21 March 2004).

    Google Scholar 

  9. Ikeda, F., Fundamentals of Piezoelectricity, Oxford University Press, Oxford, New York, 1990.

    Google Scholar 

  10. Magnetostriction, http://en.wikipedia.org/wiki/Magnetostriction (16 March 2004).

    Google Scholar 

  11. Magnetostrictive Transducers, Actuators, and Sensors at Iowa State University, http://www.public.iastate.edu/~terfenol/homepage.html (16 March 2004).

    Google Scholar 

  12. Zdenko, F., Ultrasonic Measurements and Technologies, Chapman & Hall, New York, 1996.

    Google Scholar 

  13. Berner, B. and Dinh, S., Fundamental Concept in Controlled Release, in A. Kydonieus (Ed.), Treatise on Controlled Drug Delivery, Marcel Dekker, Inc., New York, 1992, pp. 1–35.

    Google Scholar 

  14. Gliadel R®, http://virtualtrials.com/Gliadel/ (18 March 2004).

    Google Scholar 

  15. ReGel R®, http://www.macromed.com/technology.htm (18 March 2004).

    Google Scholar 

  16. Langer, R., Drug Delivery and Targetin, Nature, 1998;392 (SUPP.):5–10.

    CAS  Google Scholar 

  17. Uhrich, K.E., Cannizzaro, S.M., Langer, R.S., and Shakesheff K.M., Polymeric Systems for Controlled Release, Chemical Reviews, 1999;99(11):3181–3198.

    Article  CAS  Google Scholar 

  18. Mojaverian, P., Chan, K., Desai, A., and John, V., Gastrointestinal Transit of a Solid Indigestible Capsule as Measured by Radiotelemetry and Dual Gamma Scintigraphy, Pharmaceutical Research, 1989;6(8):719–724.

    Article  CAS  Google Scholar 

  19. EZorb Calcium Product Information, http://www.elixirindustry.com/EZorb-Calcium-Info-4-physicians.pdf (18 March 2004).

    Google Scholar 

  20. Shalaby, W.S.W., Blevins, W.E., and Park, K., In Vitro and In Vivo Studies of Enzyme-digestible Hydrogels for Oral Drug Delivery, Journal of Controlled Release, 1992;19(1–3):131–144.

    Article  CAS  Google Scholar 

  21. Bowersock, T.L., Shalaby, W.S.W., Levy, M., Blevins, W.E., White, M.R., Borie, D.L., and Park, K., The Potential Use of Poly(methacrylic acid) Hydrogels for Oral Administration of Drugs and Vaccines to Ruminants, Journal of Controlled Release, 1994;31(3):245–254.

    Article  CAS  Google Scholar 

  22. Gutowska, A., Bark, J.S., Kwon, I.C., Bae, Y.H., Cha, Y., and Kim, S.W., Squeezing Hydrogels for Controlled Oral Drug Delivery, Journal of Controlled Release, 1997;48(2–3):141–148.

    Article  CAS  Google Scholar 

  23. Shantha, K.L. and Harding, D.R.K., Synthesis and Evaluation of Sucrose Containing Polymeric Hydrogels for Oral Drug Delivery, Journal of Applied Polymer Science, 2002;84:2597–2604.

    Article  CAS  Google Scholar 

  24. Verma, R.K., Krishna, D.M., and Garg, S., Formulation Aspects in the Development of Osmotically Controlled Oral Drug Delivery Systems, Journal of Controlled Release, 2002;79(1–3):7–27.

    Article  CAS  Google Scholar 

  25. Hussaina, A., Arnoldb, J.J., Khana, M.A., and Ahsana, F., Absorption Enhancers in Pulmonary Protein Delivery, Journal of Controlled Release, 2004;94(1):15–24.

    Article  Google Scholar 

  26. Labiris, N.R. and Dolovich, M.B., Pulmonary Drug Delivery. Part I: Physiological Factors Affecting Therapeutic Effectiveness of Aerosolized Medications, British Journal of Clinical Pharmacology, 2003;56(6):588–599.

    Article  CAS  Google Scholar 

  27. Patton, J.S., Bukar, J., and Nagarajan, S., Inhaled Insulin, Advanced Drug Delivery Reviews, 1999;35(2–3):235–247.

    Article  CAS  Google Scholar 

  28. Franz, T.J., Tojo, K., Shah, K.R., and Kydonieus, A., Transdermal Delivery, in A. Kydonieus (Ed.), Treatise on Controlled Drug Delivery, Marcel Dekker, Inc., New York, 1992, pp. 341–421.

    Google Scholar 

  29. Tissues, http://www.bmb.psu.edu/courses/bisci004a/tissues/skin.jpg (18 March 2004).

    Google Scholar 

  30. Willams, A.C. and Barry, B.W., Skin Absorption Enhancers, Critical Reviews in Therapeutic Drug Carrier Systems, 1992;9:305–353.

    Google Scholar 

  31. McAllister, D.V., Allen, M.G., and Prausnitz, M.R., Microfabricated Microneedles for Gene and Drug Delivery, in M. Yarmush, K.R. Diler, and M. Toner (Eds.), Annual Review of Biomedical Engineering, Annual Reviews, Palo, Alto, California, 2000, pp. 289–313.

    Google Scholar 

  32. Manitoba Health, Emergency Treatment Guidelines Appendix. Routes for drug administration. http://www.gov.mb.ca/health/ems/guidelines/A2.pdf (18 March 2004).

    Google Scholar 

  33. Tice, T.R. and Tabibi, S.E., Parenteral Drug Delivery: Injectable, in A. Kydonieus (Ed.), Treatise on Controlled Drug Delivery, Marcel Dekker, Inc., New York, 1992, pp. 315–339.

    Google Scholar 

  34. Jeong, B., Choi, Y.K., Bae, Y.H., Zentner, G., and Kim, S.W., New Biodegradable Polymers for Injectable Drug Delivery Systems, Journal of Controlled Release, 1999;62(1–2):109–114.

    Article  CAS  Google Scholar 

  35. Vanrell, R.H. and Refojo, M.F., Biodegradable Microspheres forVitreoretinal Drug Delivery, Advanced Drug Delivery Reviews, 2001;52(1):5–16.

    Article  Google Scholar 

  36. Sinha, V.R. and Trehan, A., Biodegradable Microspheres for Protein Delivery, Journal of Controlled Release, 2003;90(3):261–280.

    Article  CAS  Google Scholar 

  37. Wang, J., Wang, B.M., and Schwendeman, S.P., Mechanistic Evaluation of the Glucose-induced Reduction in Initial Burst Release of Octreotide Acetate from Poly(D, L-lactide-co-glycolide) Microspheres, Biomaterials, 2004;25(10):1919–1927.

    Article  CAS  Google Scholar 

  38. Okada, H., One-and Three-month Release Injectable Microspheres of the LH-RH Superagonist Leuprorelin Acetate, Advanced Drug Delivery Reviews, 1997;28(1):43–70.

    Article  CAS  Google Scholar 

  39. Gerstel, M.S. and Place, V.A., Drug Delivery Device, US Patent No. 3,964,482, 1976.

    Google Scholar 

  40. Hashmi, S., Ling, P., Hashmi, G., Reed, M., Gaugler, R., and Trimmer, W., Genetic Transformation of Nematodes Using Arrays of Micromechanical Piercing Structures, BioTechniques, 1995;19:766–770.

    CAS  Google Scholar 

  41. Henry, S., McAllister, D., Allen, M.G., and Prausnitz, M.R., Microfabricated Microneedles: Novel Nethod to Increase Transdermal Drug Delivery, Journal of Pharmaceutical Sciences, 1998;87(8):922–925.

    Article  CAS  Google Scholar 

  42. Kim, K., Park, D.S., Lu, H.M., Che, W., Kim, K., Lee, J.B., and Ahn, C.H., A Tapered Hollow Metallic Microneedle Array Using Backside Exposure of SU-8, Journal of Micromechanics and Microengineering, 2004;14(4):597–603.

    Article  CAS  Google Scholar 

  43. Davis, S.P., Prausnitz, M.R., and Allen, M.G., Fabrication and Characterization of Laser Micromachined Hollow Microneedles, TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on June 9–12, 2003, Vol. 2, pp. 1435–1438.

    Article  CAS  Google Scholar 

  44. Griss, P. and Stemme, G., Side-opened Out-of-plane Microneedles for Microfluidic Transdermal Liquid Transfer, Journal of Microelectromechanical Systems, 2003;12(3):296–301.

    Article  Google Scholar 

  45. Gardeniers, H.J.G.E., Luttge, R., Berenschot, E.J.W., de Boer, M.J., Yeshurun, S., Heferz, M., van’t Oever, R., and van de Berg, A., Silicon Micromachined Hollow Microneedles for Transdermal Liquid Transport, Journal of Microelectromechanical Systems, 2003;12(6):855–862.

    Article  Google Scholar 

  46. Baker, R., Controlled Release of Biologically Active Agents, John Wiley & Sons, Inc., New York, 1987.

    Google Scholar 

  47. Foldvari, M., Non-invasive Administration of Drugs Through the Skin: Challenges in Delivery System Design, Pharmaceutical Science & Technology Today, 2000;3(12):417–425.

    Article  CAS  Google Scholar 

  48. Barry, B.W., Novel Mechanism and Devices to Enable Successful Transdermal Drug Delivery, European Journal of Pharmaceutical Sciences, 2001;14:101–114.

    Article  CAS  Google Scholar 

  49. Chien, T.W., Systemic Delivery of Peptide-based Pharmaceuticals by Transdermal Periodic Iontherapeutic System, in R. Gurny and A. Teubner (Eds.), Dermal and Transdermal Drug Delivery-New Insights and Perspectives, Wissenschaftliche Verlagsfesellschaft mbH, Stuttgart, Germany, 1993, pp. 129–152.

    Google Scholar 

  50. Gazelius, B., Innovation in microvascular diagnosis. Iontophoresis theory, http://www.perimed.se/p_Applications/IontophoresisTheory.pdf (19 March 2004).

    Google Scholar 

  51. Kalia, Y.N., Naik, A., Garrison, J., and Guy, R.H., Iontophoretic Drug Delivery, Advanced Drug Delivery Reviews, 2004;56(5):619–658.

    Article  CAS  Google Scholar 

  52. Prausnitz, M.R., Bose, V.G., Langer, R., and Weaver, J.C., Electroporation of Mammalian Skin: A Mechanism to Enhance Transdermal Drug Delivery, Proceedings of the National Academy of Science of the Unite States of America, 1993, Vol. 90, No. 22, pp. 10504–10508.

    Article  CAS  Google Scholar 

  53. Nagendu, D.R., Dev, B., Fewell, J., Smith, L.C., Widera, G., and Zhang, L., Enhancement of Therapeutic Drug and DNA Delivery into Cells by Electroporation, Journal of Physics D: Applied Physics, 2003;36:348–363.

    Article  Google Scholar 

  54. Mir, L.M. and Orlowski, S., Mechanisms of Electrochemotherapy, Advanced Drug Delivery Reviews, 1999;35(1):107–118.

    Article  CAS  Google Scholar 

  55. Heller, R., Gilbert, R., and Jaroszeski, M.J., Clinical Applications of Electrochemotherapy, Advanced Drug Delivery Reviews, 1999;35(1):119–129.

    Article  CAS  Google Scholar 

  56. Denet, A.R., Vanbever, R., and Préat, V., Skin Electroporation for Transdermal and Topical Delivery, Advanced Drug Delivery Reviews, 2004;56(5):659–674.

    Article  CAS  Google Scholar 

  57. Prausnitz, M.R., The Effects of Electric Current Applied to Skin: A Review for Transdermal Drug Delivery, Advanced Drug Delivery Reviews, 1996;18(3):395–425.

    Article  CAS  Google Scholar 

  58. Vanbever, R. and Préat, V., In Vivo Efficacy and Safety of Skin Electroporation, Advanced Drug Delivery Reviews, 1999;35(1):77–88.

    Article  CAS  Google Scholar 

  59. Tachibana, K. and Tachibana, S., Transdermal Delivery of Insulin by Ultrasonic Vibration, Journal of Pharmacy and Pharmarcology, 1991;43:270–271.

    CAS  Google Scholar 

  60. Tachibana, K., Transdermal Delivery of Insulin to Alloxan-diabetic Rabbits by Ultrasound Exposure, Pharmaceutical Research, 1992;9:952–954.

    Article  CAS  Google Scholar 

  61. Mitragoir, S., Blankschtein, D., and Langer, R., Ultrasound-mediated Transdermal Protein Delivery, Science, 1995;269:850–853.

    Article  Google Scholar 

  62. Merino, G., Kalia, Y.N., Delgado-Charro, M.B., Potts, R.O., and Guy, R.H., Frequency and Thermal Effects on the Enhancement of Transdermal Transport by Sonophoresis, Journal of Controlled Release, 2003;88(1):85–94.

    Article  CAS  Google Scholar 

  63. Tezel, A., Sens, A., Tuchscherer, J., and Mitragoir, S., Frequency dependence of sonophoresis, Pharmaceutical Research, 2001;18:1694–1700.

    Article  CAS  Google Scholar 

  64. Flynn, H.G., Physics of Acoustic Cavitation in Liquid, in W.P. Mason (Ed.), Physical Acoustics: Principles and Methods, Academic Press, New York, 1964, Vol. 1, Part B, pp. 58–172.

    Google Scholar 

  65. Frizzell, L.A., Biological Effects of Acoustic Cavitation, in K.S. Suslick (Ed.), Ultrasound Its Chemical, Physical, and Biological Effects, VCH, Verlagsgesellschaft mbH, Germany, 1988, pp. 287–303.

    Google Scholar 

  66. Le, W. and Nyborg, M., Acoustic Streaming, in W.P. Mason (Ed.), Physical Acoustics: Principles and Methods, Academic Press, New York, 1965, pp. 265–331.

    Google Scholar 

  67. Tang, H., Blankschtein, D., and Langer, R., An Investigation of the Role of Cavitation in Low Frequency Ultrasound Mediated Transdermal Drug Transport, Pharmaceutical Research, 2002;19:1160–1169.

    Article  CAS  Google Scholar 

  68. Tezel, A., Sens, A., and Mitragotri, S., Investigation of the Role of Cavitation in LowFrequency Sonophpresis Uding Acoustic Spectroscopy, Journal of Pharmaceutical Sciences, 2002;91:444–453.

    Article  CAS  Google Scholar 

  69. Mitragotri, S. and Kost, J., Low Frequency Sonophoresis, Advanced Drug Delivery Reviews, 2004;56:589–601.

    Article  CAS  Google Scholar 

  70. Mitragotri, S., Edwards, D.A., Blankschitein, D., and Langer, R., A Mechanistic Study of Ultrasound Enhanced Transdermal Drug Delivery, Journal of Phamaceutical Research, 1995;84(6):697–706.

    CAS  Google Scholar 

  71. Miller, M.W., Battaglia, L.F., and Mazza, S., Biological and Environmental Factors Affecting Ultrasound Induced Hemolysis In Vitro: Medium Tonicity, Ultrasound in Medicine and Biology, 2003:29(5):713–724.

    Article  Google Scholar 

  72. Dalecki, D., Raeman, C.H., Child, S.Z., Cox, C. Francis, C.W., Meltzer, R.S., and Carstensen, E.L., Hemolysis In Vivo from Exposure to Pulsed Ultrasound, Ultrasound in Medicine and Biology, 1997;23(2):307–313.

    Article  CAS  Google Scholar 

  73. Miller, D.L. and Thomas, R.M., Contrast Agent Gas Bodies Enhance Hemolysis Induced by Lithotripter Shock Waves and High Intensity Focused Ultrasound in Whole Blood, Ultrasound in Medicine and Biology, 1996;22(8):1089–1095.

    Article  CAS  Google Scholar 

  74. Dalecki, D., Child, S.Z., Raeman, C.H., Xing, C., Gracewski, S., and Carstensen, E.L., Bioeffects of Positive and Negative Acoustic Pressures in Mice Infused with Microbubbles, Ultrasound in Medicine and Biology, 2000;26(8):1327–1332.

    Article  CAS  Google Scholar 

  75. Coleman, A.J. and Saunders, J.E., A Review of the Physical Properties and Biological Effects of the High Amplitude Acoustic Fields used in Extracorporeal Lithotripsy, Ultrasonics, 1993;31:75–89.

    Article  CAS  Google Scholar 

  76. Fry, F.Y., Sanghvi, N.T., Foster, R.S., Bihrle, R., and Hennige, C., Ultrasound and Microbubbles: Their Degeneration, Detection and Potential Ultilization in Tissue and Organ Therapy—Experimental, Ultrasound in Medicine and Biology, 1995;21(8):1227–1237.

    Article  CAS  Google Scholar 

  77. Shi, W.T., Forsberg, F., Tornes, A., Ostensen, J., and Goldberg, B.B., Destruction of Contrast Microbubbles and the Association with Inertial Cavitation, Ultrasound in Medicine and Biology, 2000;26(8)1009–1019.

    Article  CAS  Google Scholar 

  78. Mornstein, V., Cavitation-induced Risks Associated with Contrast Agents Used in Ultrasonography, European Journal of Ultrasound, 1997;5(2):101–111.

    Article  Google Scholar 

  79. Everbach, E.C., Makin, I.R.S., Azadniv, M., and Meltzer, R.S., Correlation of Ultrasound-induced Hemolysis with Cavitation Detector Output In Vitro, Ultrasound in Medicine and Biology, 1997;23(4):619–624.

    Article  CAS  Google Scholar 

  80. Miller, M.W. and Battaglia, L.F., The Relevance of Cell Size on Ultrasound-induced Hemolysis in Mouse and Human Blood In Vitro, Ultrasound in Medicine and Biology, 2003;29(10):1479–1485.

    Article  Google Scholar 

  81. Mitragotri, S., Synergistic Effect of Enhancers for Transdermal Drug Delivery, Pharmaceutical Research, 2000;17(11):1354–1359.

    Article  CAS  Google Scholar 

  82. Kalia, Y.N. and Guy, R.H., Interaction between Penetration Enhancer and Iontophoresis: Effect on Human Skin Impedence In Vivo, Journal of Controlled Realse, 1997;44(1):33–42.

    Article  CAS  Google Scholar 

  83. Grewal, B.S., Naik, A., Irwin, W.J., Gooris, G., De Grauw, C.J., H. G., and Gerritsen, J.A.B., Transdermal Macromolecular Delivery: Real-time Visulization of Iontophoresis and Chemically Enhanced Transport Using Tow Photon Excitation Microscopy, Pharmaceutical Research, 2000;17(7):788–795.

    Article  CAS  Google Scholar 

  84. Ilic, L., Gowrishankar, T.R., Vaughan, T.E., Herndon, T.O., and Weaver, J., Spatially Constrained Skin Electroporation with Sodium Thiosulfate and Urea Creates Transdermal Microconduits, Journal of Controlled Release, 1999;61(1–2):185–202.

    Article  CAS  Google Scholar 

  85. Johnson, M.E., Mitragotri, S., Patel, A., Blankschtein, D., and Langer, R., Synergistic Effects of Chemical Enhancers and Therapeutic Ultrasound on Transdermal Drug Delivery, Journal of Pharmaceutical Sciences, 1996;85(7):670–679.

    Article  CAS  Google Scholar 

  86. Mitragotri, S., Ray, D., Farrell, J., Tang, H., Yu, B., Kost, J., Blankschtein, D., and Langer, R., Synergistic Effect of Low-frequency Ultrasound and Sodium Lauyl Sulfate on Transdermal Transport, Journal of pharmaceutical Sciences, 2000;89(7):892–900.

    Article  CAS  Google Scholar 

  87. Tezel, A., Sens, A., Tuchscherer, J., and Mitragotri, S., Synergistic Effect of Low-frequency Ultrasound and Surfactants on Skin Permeability, Journal of pharmaceutical Sciences, 2002;91(1):91–100.

    Article  CAS  Google Scholar 

  88. Le, L., Kost, J., and Mitragotri, S., Combined Effect of Low-frequency Ultrasound and Iontophoresis: Applications for Transdermal Heparin Delivery, Pharmaceutical Research, 2000;17(9):1151–1154.

    Article  CAS  Google Scholar 

  89. Kost, J., Pliquett, U., Mitragotri, S., Yamamoto, A., Langer, R., and Weaver, J., Synergistic Effect of Electric Field and Ultrasound on Transdermal Transport, Pharmaceutical Research, 1996;13(5):633–638.

    Article  CAS  Google Scholar 

  90. Bommanon, D., Tamada, J., Leung, L., and Potts, R., Effects of Electroporation on Transdermal Iontophoretic Delivery of Leutinizing Hormone Releasing Hormone, Pharmaceutical Research, 1994;11(12):1809–1814.

    Article  Google Scholar 

  91. Chang, S., Hofman, G., Zhang, L., Deftos, L., and Banaga, A., The Effect of Electroporation on Iontophoretic Transdermal Delivery of Calcium Regulating Hormone, Journal of Controlled Release, 2000;66(2–3):127–133.

    Article  CAS  Google Scholar 

  92. Fox, M.D. Disposable Piezoelectric Polymer Bandage for Percutaneous Delivery of Drugs and Method for such Percutaneous Delivery (A), US Patent Number 4,787,888, 1988.

    Google Scholar 

  93. Lipkovker, L.M., Ultrasonic Transdermal Drug Delivery System, US Patent Number 5,421,816, 1995.

    Google Scholar 

  94. Kost, J., Mitragotri, S., Gabbay, R., Pishko, M., and Langer, R., Transdermal Monitoring of Glucose and Other Analytes Using Ultrasound, Nature Medicine, 2000;6(3):347–350.

    Article  CAS  Google Scholar 

  95. Mitragotri, S., Coleman, M., Kost, J., and Langer, R., Transdermal Extraction of Analytes Using Lowfrequency Ultrasound, Pharmaceutical Research, 2000;17(4):466–470.

    Article  CAS  Google Scholar 

  96. Kost, J., Mitragotri, S., Gabbay, R., Pishko, M., and Langer, R., Measurement of Glucose in Diabetic Subjects Using Noninvasive Transdermal Extraction, Nature Medicine, 1995;1(11):1198–1201.

    Article  Google Scholar 

  97. Tachibana, S. and Shibata, U., Endermic Application Kits for External Medicines, US Patent Number 4,953,565, 1990.

    Google Scholar 

  98. Flanagan, D.F., Endermic Method and Apparatus, US Patent Number 5,171,215, 1992.

    Google Scholar 

  99. Tyle and Agrawala, Drug Delivery by Phonophoresis, Pharmaceutical Research, 1989;6(5):355–361.

    Article  CAS  Google Scholar 

  100. Shimada, J. and Shapland, J.E., Drug Delivery by Multiple Frequency Phonophoresis, US Patent Number 5,267,985, 1993.

    Google Scholar 

  101. Bock, R.T., Ultrasonic Method and Apparatus for Cosmetic and Dermatological Applications, US Patent Number 5,618,275, 1997.

    Google Scholar 

  102. Mitragoir, S., Blankschtein, D., and Langer, R., Transdermal Drug Delivery Using Low-frequency Sonophoresis, Pharmaceutical Research, 1996;13(3):411–420.

    Article  Google Scholar 

  103. Rowe, S., Kost, J., Mitragotri, S., Pishko, M., and Davis, M., Ultrasound Enhancement of Transdermal Transport, US Patent Number 6,234,990 B1, 2001.

    Google Scholar 

  104. Rowe, S., Kost, J., Mitragotri, S., Pishko, M., and Davis, M., Ultrasound Enhancement of Transdermal Transport, US Patent Number 0045850 A1, 2002.

    Google Scholar 

  105. Ball, G.R. and Katz, B.H., Apparatus and Method for Sonically Enhanced Drug Delivery, US patent 6,024,717, 2000.

    Google Scholar 

  106. Yeo, S.H. and Zhang, H.Y., Development of a Novel Sonophoresis Micro-device, Biomedical Micordevices, 2003;5(3):201–206.

    Article  CAS  Google Scholar 

  107. Business Communications Company, Inc., http://www.bccresearch.com/editors/RC-050V.html (20 March 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Yeo, S.H., Zhang, H.Y. (2006). Techniques in Sonophoresis Biomedical Devices and Their Applications. In: Leondes, C.T. (eds) MEMS/NEMS. Springer, Boston, MA. https://doi.org/10.1007/0-387-25786-1_34

Download citation

Publish with us

Policies and ethics