Skip to main content
Book cover

MEMS/NEMS pp 1252–1328Cite as

Techniques in Residual Stress Measurement for MEMS and Their Applications

  • Chapter

Abstract

This chapter mainly focuses on the introduction of residual stress characterization of MEMS materials. The origin and classification of residual stress appearing in thin films and MEMS structures are firstly introduced and the essential background of necessary mechanics, which is utilized to convert the measured data into the final residual stress, is followed. Various types of residual stress characterization techniques conducted in MEMS scale are subsequently addressed and reviewed. Finally, a brief discuss on controlling residual stresses and on taking the advantage of residual stress in MEMS applications is briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trimmer, W. (Ed.), Micromechanics and MEMS: Classic and Seminal Papers to 1990, IEEE Press, 1997.

    Google Scholar 

  2. Madou, M.J., Fundamentals of Microfabrication, CRC Press, 1997.

    Google Scholar 

  3. Kovacs, G., Micromachined Transducers Sourcebook, McGraw-Hill, 1998.

    Google Scholar 

  4. Maluf, N., An Introduction to Microelectromechanical Systems Engineering, Artech House, 2000.

    Google Scholar 

  5. Gad-el-Hak, M. (Ed.), The MEMS Handbook, CRC Press, Boca Raton, 2002.

    Google Scholar 

  6. Kovacs, G., Maluf, N., and Petersen, K., Bulk Micromachining of Silicon, Proc. IEEE, 1998;86:1536–1551.

    Article  CAS  Google Scholar 

  7. Bustillo, J., Howe, R., and Muller, R., Surface Micromachining for Microelectromechanical Systems, Proc. IEEE, 1998;86:1552–1574.

    Article  CAS  Google Scholar 

  8. Schmidt, M.A., Wafer-to-Wafer Bonding for Microstructure Formation, Proc. IEEE, 1998;86:1575–1585.

    Article  CAS  Google Scholar 

  9. Senturia, S.D., CAD Challenges for Microsensors, Microactuators, and Microsystems, Proc. IEEE, 1998;86:1611–1626.

    Article  Google Scholar 

  10. Petersen, K., Silicon as a Mechanical Materials, Proc. IEEE, 1982;70:420–457.

    Article  CAS  Google Scholar 

  11. Epstein, A.H. and Senturia, S.D., Macro Power from Micro Machinery, Science, 1997;276:1211.

    Article  CAS  Google Scholar 

  12. Chen, K.-S., Materials Characterization and Structural Design of Ceramic Micro Turbomachinery, Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, Feb. 1999.

    Google Scholar 

  13. Lohner, K.A., Microfabricated Refractory Ceramic Structures for Micro Turbomachinery, Master of Science, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, Jun. 1999.

    Google Scholar 

  14. Sullivan, S., Development and Testing of Microscale Silicon Heat Exchangers for the MIT Micro Gas-Turbine Engine, SM Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 2000.

    Google Scholar 

  15. Roberts, D.C., Design, Modeling, Fabrication and Testing of a Piezoelectric Microvalve for High Pressure, High Frequency Hydraulic Applications, Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 2002.

    Google Scholar 

  16. Ashby, M.F., Materials Section in Mechanical Design, Butterworth Heinemann, 1995.

    Google Scholar 

  17. Sharpe, W.N., A New Technique for Measuring the Mechanical Properties of Thin Films, IEEE J. Microelectromechanical Systems, 1997;6:193–199.

    Article  Google Scholar 

  18. Sharpe, W.N., Mechanical Properties of MEMS Materials, in M. Gad-el-Hak (Ed.), The MEMS Handbook, CRC Press, Boca Raton, FL, 2001.

    Google Scholar 

  19. Spearing, S.M., Materials Issues in Microelectromechanical Systems (MEMS), Acta Mater., 2000;48:179.

    Article  CAS  Google Scholar 

  20. Srikar, V.T. and Spearing, S.M., A Critical Review of Microscale Mechanical Testing Methods Used in the Design of Microelectromechanical Systems, Experimental Mechanics, 2003;43:238–247.

    Article  Google Scholar 

  21. Freund, L.B. and Suresh, S., Thin Film Materials, Stress, Defect Formation and Surface Evolution, Cambridge University Press, 2003.

    Google Scholar 

  22. Lu, J. (Ed.), Handbook of Measurement of Residual Stresses, Fairmont Press, Liburn, GA, 1996.

    Google Scholar 

  23. Withers, P.J. and Bhadeshia, H., Residual Stress Part 1-Measurement Techniques, Materials Science and Technology, 2001;17:355–365.

    Article  CAS  Google Scholar 

  24. Withers, P.J. and Bhadeshia, H., Residual Stress Part 2-Nature and Origins, Materials Science and Technology, 2001;17:366–375.

    CAS  Google Scholar 

  25. Kandil, F.A., Lord, J.D., Fry, A.T., and Grant, P.V., A Review of Residual Stress Measurement Methods-A Guide to Technique Selection, NPL Report MATC(A)04, UK, 2001.

    Google Scholar 

  26. Frechette, L., Development of a Microfabricated Silicon Motor-Driven Compressor System, Ph.D. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 2000.

    Google Scholar 

  27. Pruessner, M.W., King, T.T., Kelly, D.P., Grover, R., Calhoun, L.C., and Ghodssi, R., Mechanical Property Measurement of InP-Based MEMS for Optical Communications, Sensors and Actuators A, 2003;105:190–200.

    Article  CAS  Google Scholar 

  28. Chen, K.-S., Lin, S.-Y., and Chen, J.-Y., Fracture Analysis of Thick PECVD Oxide Films for Improving Structural Integrity of Power MEMS, J. Micromechanics and Microengineering, 2002;12:714–722.

    Article  CAS  Google Scholar 

  29. Wolf, S. and Tauber, D.N., Silicon Processing for VLSI Era, Lattice Press, 1986, Vol. I.

    Google Scholar 

  30. Rebeiz, G.M., RF MEMS Theory, Design, and Technology, Wiley, 2003.

    Google Scholar 

  31. Lin, I.-K., Study on Three-Dimensional Micro Structures Processing Technologies, SM theiss, Department of Mechanical Engineering, National Cheng-Kung University, Taiwan, 2004.

    Google Scholar 

  32. Chen, K.-S. and Ou, K.-S., Equivalent Strengths for Reliability Assessment of MEMS Structures, Sensors and Actuators A, 2004;112:163–174.

    Article  CAS  Google Scholar 

  33. Prevey, P.S., X-Ray Diffraction Residual Stress Techniques, in Metal Handbook, ASM, 1986, pp. 380–392.

    Google Scholar 

  34. Gnaupel-Herold, T., Prask, H., Hehman, C., and Nguyen, T., A Comparison of Neutron and Ultrasonic Determinations of Residual Stress, Meas. Sci. Technol., 2000;11:436–444.

    Article  CAS  Google Scholar 

  35. Srikar, V.T., Swan, A.K., Ünlü, M.S., Goldberg, B.B., and Spearing, S.M., Micro-Raman Measurement of Bending Stresses in Micromachined Silicon Flexures, IEEE J. Microelectromechanical Systems, 2003;12:779–787.

    Article  Google Scholar 

  36. Hernandez, C.M., Murray, T.W., and Krishnaswamy, S., Photoacoustic Characterization of the Mechanical Properties of Thin Films, Applied Physics Letters, 2002;80:691.

    Article  CAS  Google Scholar 

  37. Fang, W. and Wickert, J.A., Post Buckling of Micromachined Beams, J. Micromechanics and Microengineering, 1994;4:115–122.

    Google Scholar 

  38. Fang, W. and Wickert, J.A., Comments on Measuring Thin-Film Stresses Using Bi-layer Micromachined Beams, J. Micromechanics and Microengineering, 1995;:5:276–281.

    Article  Google Scholar 

  39. Fang, W., Determination of the Elastic Modulus of Thin Film Materials Using Self-Deformed Micromachined Cantilever, J. Micromechanics and Microengineering, 1999;9:230–235.

    Article  Google Scholar 

  40. Fang, W., Lee, C.-H., and Hu, H.-H., On The Buckling Behavior of Micromachined Beams, J. Micromechanics and Microengineering, 1999;9:236–244.

    Article  Google Scholar 

  41. Hohlfelder, R.J., Bulge and Blister Testing for Thin Films and Their Interfaces, Ph.D. Thesis, Department of Materials Science and Engineering, Stanford University, Stanford, CA, 1998.

    Google Scholar 

  42. Fan, L.-S., Muller, R.S., Yun, W., Huang, J., and Howe, R.T., Spiral Microstructures for the Measurement of Average Strain Gradients in Thin Films, in Proceedings IEEE Micro Electro Mechanical Systems (MEMS’ 90). Napa Valley, CA, 1990, pp. 177–181.

    Google Scholar 

  43. Singh, J., Chandra, S., and Chand, A., Strain Studies in LPCVD Polysilicon for Surface Micromachined Devices, Sensors and Actuators A, 1999;77:133–138.

    Article  Google Scholar 

  44. Lawn, B., Fracture of Brittle Solid, 2nd Ed., Cambridge University Press, 1993.

    Google Scholar 

  45. Fischer-Cripps, A.C., Nanoindentation, Springer, 2002.

    Google Scholar 

  46. Doerner, M.F. and Nix, W.D., Stresses and Deformation Processes in Thin Films on Substrates, CRC Critical Review in Solid State and Materials Science, 1988;14:225.

    Article  CAS  Google Scholar 

  47. Hoffman, R.W., Thin Solid Films, 1976;34:185.

    Article  CAS  Google Scholar 

  48. Nix, W.D., Mechanical Properties of Thin Films, Metallurgical Transactions, 1989;20A:2217–2245.

    CAS  Google Scholar 

  49. Hu, S.M., Stress-Related Problems in Silicon Technology, J. Applied Physics, 1991;70:R53–R80.

    Article  CAS  Google Scholar 

  50. Ohring, M., The Materials Science of Thin Films, Academic Press, Boston, 1992.

    Google Scholar 

  51. Smith, D.L., Thin-Film Deposition, Principles and Practice, McGraw-Hill, 1995.

    Google Scholar 

  52. Buckel, W., Internal Stresses, J. Vacuum Science and Technology, 1969;6:606.

    Article  CAS  Google Scholar 

  53. Chaundri, P., Grain Growth and Stress Relief in Thin Films, Journal of Vacuum Science and Technology, 1973;9:520.

    Google Scholar 

  54. Zhang, X., Ghodssi, R., Chen, K.-S., Ayon, A., and Spearing, S., Residual Stress Characterization of Thick PECVD TEOS Film for Power MEMS Application, in Solid-State Sensor and Actuator Workshop, Hilton-Head, SC, June, 2000.

    Google Scholar 

  55. Klockholm, E. and Berry, B.S., Intrinsic Stress in Evaporated Metal Films, J. Electrochem. Soc., 1968;115:823.

    Article  Google Scholar 

  56. Olevsky, E.A., Theory of Sintering: from Discrete to Continuum, Materials Science and Engineering R, 1998;23:41.

    Article  Google Scholar 

  57. Speight, M.V. and Beere, W., Vacancy Potential and Void Growth on Grain Boundaries, Metal Science, 1975;9:190.

    Article  Google Scholar 

  58. Chen, K.-S., Zhang, X., and Lin, S.-Y., Intrinsic Stress Generation and Relaxation of PECVD Oxide During Deposition and Subsequent Thermal Cycling, Thin Solid Films, 2003;434:190–202.

    Article  CAS  Google Scholar 

  59. Scherer, G.W., Sintering of Low-Density Glasses: I, Theory, J. American Ceramic Society, 1977;60:236.

    Article  CAS  Google Scholar 

  60. Muller, K.H., J. Appl. Phys, 1985;58:2573.

    Article  Google Scholar 

  61. Zhang, X., Chen, K.-S., Ghodssi, R., Ayon, A., and Spearing, S., Residual Stress and Fracture in Thick Tetraethylorthosilicate (TEOS) and Silane-Based PECVD Oxide Films, Sensors and Actuators A, 2001;91:379–386.

    Article  Google Scholar 

  62. Alexander, P.M. and Hoffman, R.W., J. Vac. Sci. Technol., 1976;13:96.

    Article  CAS  Google Scholar 

  63. Pulker, H.K., Stress Measurement and Calculations for Vacuum Deposited MgF2 Films, Thin Solid Films, 1979;58:371.

    Article  CAS  Google Scholar 

  64. Koch, R., The Intrinsic Stress of Polycrystalline and Epitaxial Thin Metal Films, J. Phys. Condens. Matter, 1994;6:9519.

    Article  CAS  Google Scholar 

  65. Sankur, H. and Gunning, W., Sorbed Water and Intrinsic Stress in Composite TiO2-SiO2 Films, J. Appl. Phys., 1989;66:807.

    Article  CAS  Google Scholar 

  66. Hirsch, E.H., Stress in Porous Thin Films Through Adsorption of Polar Molecules, J. Phys. D: Appl. Phys., 1980;13:2081.

    Article  CAS  Google Scholar 

  67. Adams, A.C. et al., J. Electrochemical Society, 1981;128:1545.

    Article  CAS  Google Scholar 

  68. Novellus Systems Inc., 81 Visa Montana, San Jose, CA 95134.

    Google Scholar 

  69. Paduschek, P., Eichinger, P., Kristen, G., and Mitlehner, H., Hydrogen Content and Mechanical Stress in Glow Discharge Amorphous Silicon, Nuclear Instruments and Methods, 1982;199:421.

    Article  CAS  Google Scholar 

  70. Paduschek, P., Höpfl, C., and Mitlehner, H., Hydrogen-Related Mechanical Stress in Amorphous Silicon and Plasma-Deposited Silicon Nitride, Thin Solid Films, 1983;110:291.

    Article  CAS  Google Scholar 

  71. Windischmann, H., Effect of Hydrogen on the Intrinsic Stress in Ion Beam Sputtered Amorphous Silicon Films, J. Non-Crystalline Solids, 1986;85:261.

    Article  CAS  Google Scholar 

  72. Windischmann, H., Collins, R., and Cavese, J., Effect of Hydrogen on the Intrinsic Stress in Ion Beam Sputtered Amorphous Silicon Films, J. Non-Cryst. Sol., 1986;85:261.

    Article  CAS  Google Scholar 

  73. Windischmann, H., Intrinsic Stress and Mechanical Properties of Hydrogenated Silicon Carbide Produced by Plasma-Enhanced Chemical Vapor Deposition, J. Vac. Sci. Technol., A, 1991;9:2459.

    Article  CAS  Google Scholar 

  74. Windischmann, H., Epps, G.F., Cong, Y., and Collins, R.W., Intrinsic Stress in Diamond Films Prepared by Microwave Plasma CVD, J. Appl. Phys., 1991;69:2231.

    Article  CAS  Google Scholar 

  75. Windischmann, H., Intrinsic Stress in Sputter-Deposited Thin Films, CRC Critical Review in Solid State and Materials Science, 1992:17.

    Google Scholar 

  76. Prince, E.T., Intrinsic Stress in Hydrogenated Amorphous Carbon Prepared by RF Plasma Decomposition of Methane, J. Appl. Phys., 1991;70:4903.

    Article  CAS  Google Scholar 

  77. Knight, J.C., Structural and Chemical Charaterization, in D. Joannopoulos and G. Lucovsky (Eds.), Topics in Applied Physics: The Physics of Hydrogenated Amorphous Silicon I—Structure, Preparation, and Devices, Springer-Verlag, 1984, Vol. 55.

    Google Scholar 

  78. Thornton, J.A., Tabock, J., and Hoffman, D.W., Internal Stress in Metallic Films Deposited by Cylindrical Magnetron Sputtering, Thin Solid Films, 1979;64:111.

    Article  CAS  Google Scholar 

  79. Sigmund, P., Sputtering by Ion Bombardment: Theoretical Concepts, in R. Behrisch (Ed.), Topics in Applied Physics: Sputtering by Particle Bombardment I, Springer, Berlin, 1981, Vol. 47, pp. 1.

    Google Scholar 

  80. D’Heurle, F., Aluminum Films Deposited by RF Sputtering, Metall. Trans., 1970;1:725.

    CAS  Google Scholar 

  81. Pan, J. and Blech, I., J. Applied Physics, 1984;55:2874.

    Article  CAS  Google Scholar 

  82. Gere, J. and Timoshenko, S., Mechanics of Materials, 3rd ed., PWS, Boston, 1990.

    Google Scholar 

  83. Boresi, A.P. and Chong, K.P., Elasticity in Engineering Mechanics, 2nd Ed., John Wiley & Sons, Inc., 2000.

    Google Scholar 

  84. Tranter, C.J. and Craggs, J.W., Philos. Mag., 1947;38:214.

    Google Scholar 

  85. Spaepen, F., Interfaces and Stresses in Thin Films, Acta Mater., 2000;48:31.

    Article  CAS  Google Scholar 

  86. Hutchinson, J. and Suo, Z., Mixed Mode Cracking in Layered Materials, Advanced in Applied Mechanics, 1991;29:63.

    Article  Google Scholar 

  87. Boley, B.A. and Weiner, J.H., Theory of Thermal Stresses, Dover, 1997.

    Google Scholar 

  88. Campbell, S.A., The Science and Engineering of Microelectronic Fabrication, Oxford, 1996.

    Google Scholar 

  89. Smeys, P., Griffin, P.B., Rek, Z.U., DeWolf, I., and Saraswat, K.C., Influence of Process-Induced Stress on Device Characteristics and its Impact on Scaled Device Performance, IEEE Trans. Electron Dev, 1999;46:1245–1252.

    Article  CAS  Google Scholar 

  90. Stoney, G.G., The Tension of Thin Metallic Films Deposited by Electrolysis, Proc. R. Soc. London, A., 1909;82:172–173.

    Article  CAS  Google Scholar 

  91. Chen, K.-S. and Ou, K.-S., Modification of Curvature-Based Thin Film Residual Stresses Measurement for MEMS Applications, J. Micromechanics and Microengineering, 2002;12:917–924.

    Article  Google Scholar 

  92. Salamon, N. and Masters, C., Bifurcation in Isotropic Thin Film/Substrate Plates, Int. J. Solids Structures, 1995;32:473–481.

    Article  Google Scholar 

  93. Freund, L.B., Some Elementary Connections Between Curvature and Mismatch Strain in Compositionally Graded Thin Flims, J. Mechan. Phys. Solids, 1996;44:723.

    Article  CAS  Google Scholar 

  94. Senturia, S.D., Microsystem Design, Kluwer Academic Press, 2000.

    Google Scholar 

  95. Timoshenko, S.P. and Woinowsky-Krieger, S., Theory of Plates and Shells, McGraw-Hill, 1959.

    Google Scholar 

  96. Timosheno, S.P., Analysis of Bi-Metal Thermostats, J. Optic. Soc. Am. Rev. Sci. Inst., 1925;11:233–256.

    Google Scholar 

  97. Tsui, Y.G. and Clyne, T.W., An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coating, Part 1: Planar Geometry, Thin Solid Films, 1997;386:23–33.

    Article  Google Scholar 

  98. Lin, P.-Y., The in-situ Measurement of Mechanical Properties of Multi Layer Coatings, Ph.D. Thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1990.

    Google Scholar 

  99. Weinberg, M., Working Equations for Piezoelectric Actuators and Sensors, IEEE J. Microelectromechanical Systems, 1999;8:529–533.

    Article  Google Scholar 

  100. DeVoe, D. and Pisano, A., Modeling and Optimal Design of Piezoelectric Cantilever Microactuators, IEEE. J. Microelectromechanical Systems, 1997;6:266–270.

    Article  Google Scholar 

  101. Cook, R.D. and Young, W.C., Advanced Mechanics of Materials, Prentice-Hall, 1999.

    Google Scholar 

  102. Annastassakis, E.M., Morphic Effects in Lattice Dynamics, in G.K. Horton and A.A. Maradudin (Eds.), Dynamical Properties of Solids, North Holland, 1980.

    Google Scholar 

  103. Anastassakis, E., Cantarero, A., and Cardona, M., Piezo-Raman Measurements and Anharmonic Parameters in Silicon and Diamond, Phys. Rev., 1990;B41:7529–7535.

    Google Scholar 

  104. Cardona, M., SPIE, 1987;822:2.

    CAS  Google Scholar 

  105. De Wolf, I., Raman Spectroscopy: About Chips and Stress, Spectroscopy Europe, 2003;15:6–13.

    Google Scholar 

  106. Nakashima, S., Inoue, Y., Miyauchi, M., and Mitsubishi, A., J. Appl. Phys, 1983;54:2611.

    Article  CAS  Google Scholar 

  107. Englert, T., Absteiter, G., and Pontcharra, J., Solid State Electronics, 1980;23:31.

    Article  CAS  Google Scholar 

  108. Kobayashi, K., Inoue, Y., Nishimura, T., Nishioka, T., Arima, H., Hiroyama, M., and Matsukawa, T., Extended Abstracts of the 19th Conference on Solid State Device and Materials, Tokyo, 1987, pp. 323–326.

    Google Scholar 

  109. Inoue, Y., Nishmura, T., and Akasaka, Y., Mitsubishi Electric Advance, 1987, Vol. 41, p. 28.

    Google Scholar 

  110. Pelletier, M.J., Analytical Applications of Raman Spectroscopy., Oxford, U.K.: Blackwell Science, 1999.

    Google Scholar 

  111. Chandrasekhar, M., Renucci, J.B., and Cardona, M., Effects of Interband Excitations on Raman Phonons in Heavily Doped n-Si, Phys. Rev., 1978;B17:1623–1633.

    Google Scholar 

  112. Chuang, J.-C., Use of Automatic Phase-Shifting Shadow Moire System to Measure the Shape of Wafer, SM Thesis, Department of Mechanical Engineering, National Cheng-Kung University, Taiwan, 2003.

    Google Scholar 

  113. Cheng, J.-H., Use of Phase-Shifting Shadow Moire Method to Measure the Deformation of Wafer at Elevated Temperature, SM Thesis, Department of Mechanical Engineering, National Cheng-Kung University, Taiwan, 2002.

    Google Scholar 

  114. Liou, N.-S. and Huang, C.-Y., Fourier Transform Moiré Strain Analysis by Using Cross Grating Produced from Iron-on Paper and Ink-jet Printer, Polymer Testing, 2003;22:487–490.

    Article  CAS  Google Scholar 

  115. Chen, K.-S., Chen, T.Y., Chuang, J.-C., and Lin, I.-K., Full-Field Wafer Level Thin Film Stress Measurement By Phase-Stepping Shadow Morie, IEEE Trans. CMPT, Accepted, 2004.

    Google Scholar 

  116. Park, T.-S., Suresh, S., Rosakis, A.J., and Ryu, J., Measurement of Full-Field Curvature and Geometrical Instability of Thin Film-Substrate Systems Through CGS Interferometry, J. Mechanics and Physics of Solids, 2003;51:2191–2211.

    Article  Google Scholar 

  117. Hughes, D.S. and Kelly, J.L., Second-Order Elastic Deformation of Solids, Phys. Rev., 1953;92:1145–1149.

    Article  Google Scholar 

  118. Timoshenko, S.P., Young, D.H., and Weaver, W., Vibration Problems in Engineering, Wiley, New York, 1974.

    Google Scholar 

  119. Masters, N.D., de Boer, M.P., Jensen, B.D., Baker, M.S., and Koester, D., Side-by-Side Comparison of Passive MEMS Strain Test Structures under Residual Compression, S.B. Brown and C.L. Muhlstein (Eds.), Mechanical Properties of Structural Films, STP 1413, American Society for Testing and Materials, West Conshohocken, PA, 2001.

    Google Scholar 

  120. Stark, B., MEMS Reliability Assurance Guidelines for Space Applications, NASA JPL Publication 99-1, 1999.

    Google Scholar 

  121. Guckel, H., Burns, D., Visser, C., Tilmans, H., and Deroo, D., Fine-Grained Polysilicon Films with Built-in Tensile Strain, IEEE Trans. Eelctron Devices, 1988;35:800–801.

    Article  CAS  Google Scholar 

  122. Guckel, H., Burns, D.W., Rutigliano, C., Lovell, E., and Choi, B., Diagnostic Microstructure for the Measurement of Intrinsic Strain in Thin Films, J. Micromechanics and Microengineering, 1992;2: 86–95.

    Article  Google Scholar 

  123. Guckel, H., Randazzo, T., and Burns D.W., A Simple Technique for the Determination of Mechanical Strain in Thin Films with Application to Polysilicon, J. Appl. Phys., 1985;57:1671–1675.

    Article  CAS  Google Scholar 

  124. Elbrecht, L., Storm, U., Catanescu, R., and Binder, J., Comparison of Stress Measurement Techniques in Surface Micromachining, J. Micromechanics and Microengineering, 1997;7:151–154.

    Article  CAS  Google Scholar 

  125. van Drièenhuizen, B.P., Goosen, J., French, P.J., and Wolffenbuttel, R.F., Comparison of Techniques for Measuring Both Compressive and Tensile Stress in Thin Films, Sensors and Actuators A, 1993;38: 756–765.

    Article  Google Scholar 

  126. Dardalhon, M., Pressecq, F., Nouet, P., Latorre, L., and Oudea, C., Evaluation of Process Reliability with Micromechanical Test Structures, 4th Round Table on Micro/Nano Technologies for Space, Noordwijk, the Netherlands, May 20–22, 2003.

    Google Scholar 

  127. Boutry, M., Bosseboeuf, A., Grandchamp, J.P., and Coffignal, G., Finite-Element Method Analysis of Freestanding Microrings for Thin-Film Tensile Strain Measurements, J. Micromechanics and Microengineering, 1997;7:280–284.

    Article  CAS  Google Scholar 

  128. Tsou, C. and Fang, W., The Effect of Residual Stresses on the Deformation of Semi-circular Micromachined Beams, J. Micromechanics and Microengineering, 2000;10:34–41.

    Article  Google Scholar 

  129. Tsou, C., Lin, H., and Fang, W., On the out-of-plane Deformation of V-shaped Micromachined Beams, J. Micromechanics and Microengineering, 2001;10:153–160.

    Article  Google Scholar 

  130. Kim, C.J., Silicon Electromechanical Microgrippers: Design, Fabrication, and Testing, Ph.D. Dissertation, Department of Mechanical Engineering, Univ. California, Berkeley, 1991.

    Google Scholar 

  131. Goosen, J.F.L., van Drieenhuizen, B.P., French, P.J., and Wolffenbuttel, R.F., Stress Measurement Structures for Micromachined Sensors, in Dig. Transducers’93, Int. Conf. Solid-State Sensors and Actuators, 1993, pp. 783–786.

    Google Scholar 

  132. Gianchandani, Y. and Najafi, K., Bent-Beam Strain Sensors, IEEE Journal of Microelectromechanical Systems, 1996;5:52–58.

    Article  Google Scholar 

  133. Allen, M.G., Mehregany, M., Howe, R.T., and Senturia, S.D., Microfabricated Structures for the In Situ Measurement of Residual Stress, Young’s Modulus, and Ultimate Strain of Thin Films, Appl. Phys. Lett., 1987;51:241–243.

    Article  CAS  Google Scholar 

  134. Lin, L., Selective Encapsulations of MEMS: Micro Channels, Needles, Resonators, and Electromechanical Filters, Ph.D. Thesis, Department of Mechanical Engineering, University of California, Berkeley, 1993.

    Google Scholar 

  135. Lin, L., Pisano, A., and Howe, R.T., A Micro Strain Gauge with Strain Amplifier, IEEE J. Microelectromechanical Systems, 1997;6:313–321.

    Article  Google Scholar 

  136. Krulevitch, P.A., Micromachanical Investigation of Silicon and Ni-Ti-Cu Thin Films, Ph.D. Thesis, Department of Mechanical Engineering, University of California, Berkeley, 1994.

    Google Scholar 

  137. Ericson, F., Greek, S., Soderkvist, J., and Schweitz, J., High Sensitive Internal Film Stress Measurement by an Improved Micromachined Indicator Structure, 8th International Conference on Solid-State Sensors and Actuators (Transducers’ 95), Stockholm, Sweden, June 1995, pp. 84–87.

    Google Scholar 

  138. Zhang, X., Zhang, T.-Y., and Zohar, Y., Measurements of Residual Stresses in Thin Films Using Micro-Rotating-Structures, Thin Solid Films, 1998;335:97–105.

    Article  CAS  Google Scholar 

  139. Zhang, X., Zhang, T.-Y., and Zohar, Y., FEM Simulation of Micro-Rotating-Structures and Their Applications in Measurement of Residual Stresses in Thin Films, Materials Research Society Symposium Proc., 1998, Vol. 505, pp. 21–26.

    CAS  Google Scholar 

  140. Pan, C.-S. and Hsu, W., A Microstructure for in situ Determination of Residual Strain, IEEE J. Microelectromechanical. Systems, 1999;8:200–207.

    Article  Google Scholar 

  141. Schweitz, J. and Ericson, F., Evaluation of Mechanical Properties by Means of Surafce Micromachined Structures, Sensors and Actuators A, 1999;74:126–133.

    Article  Google Scholar 

  142. Serre, C., Perez-Rodriguez, A., Romano-Rodriguez, A., Morante, J., Esteve, J., and Acero, M., Test Microstructures for Measurement of SiC Thin Film Mechanical Properties, J. Micromechanics and Microengineering, 1999;9:190–193.

    Article  CAS  Google Scholar 

  143. Min, Y.-H. and Kim, Y.-K., In situ Measurement of Residual Stress in Micromachined Thin Films Using a Specimen with Composite-Layered Cantilevers, J. Micromechanics and Microengineering, 2000;10:314–321.

    Article  CAS  Google Scholar 

  144. Hou, M.T. and Chen, R., Effect of Width on the Stress-Induced Bending of Micromachined Bilayer Cantilevers, J. Micromechanics and Microengineering, 2003;13:141–148.

    Article  Google Scholar 

  145. Hou, M.T. and Chen, R., A New Residual Stress Measurement Method Using Ultra-Wide Micromachined Bilayer Cantilevers, J. Micromechanics and Microengineering, 2004;14:490–496.

    Article  Google Scholar 

  146. Jong, C.-A., Chin, T.-S., and Fang, W., Residual Stress and Thermal Expansion Behavior of TaOx Ny films by the Micro-Cantilever Method, Thin Solid Films, 2001;401:291–297.

    Article  CAS  Google Scholar 

  147. Seok, S., Lee, B., and Chun, K., A New Electrical Residual Stress Characterization Using Bent Beam Actuators, J. Micromechanics and Microengineering, 2002;12:562–566.

    Article  Google Scholar 

  148. Zhang, T.-Y., Su, Y.-J., Qian, C.-F., Zhao, M.-H., and Chen, L.-Q., Microbridge Testing of Silicon Nitride Thin Films Deposited on Silicon Wafers, Acta Materialia, 2000;48:2843–2857.

    Article  CAS  Google Scholar 

  149. Denhoff, M.W., A Measurement of Young’s Modulus and Residual Stress in MEMS Bridges Using a Surface Profiler, J. Micromechanics and Microengineering, 2003:13:686–692.

    Article  Google Scholar 

  150. Chen, S., Baughn, T.V., Yao, Z.Y., and Goldsmith, C.L., A New in situ Residual Stress Measurement Method for a MEMS thin Fixed-Fixed Beam Structure, IEEE J. Microelectromechanical Systems, 2002;11:309–316.

    Article  Google Scholar 

  151. Espinosa, H.D., Zhu, Y., Fischer, M., and Hutchinson, J., An Experimental/Computational Approach to Identify Moduli and Residual Stress in MEMS Radio-Frequency Switches, Experimental Mechanics, 2003;43:309–316.

    Article  Google Scholar 

  152. ABAQUS/Standard 5.8 User’s Manual, Hibbit, Karlsson, and Sorensen, Inc., Pawtucket, RI, 1998.

    Google Scholar 

  153. Baker, M.S., de Boer, M.P., Smith, N.F., Warne, L.K., and Sinclair, M.B., Integrated Measurement-Modeling Approaches for Evaluating Residual Stress Using Micromachined Fixed-Fixed Beams, IEEE J. Microelectromechanical Systems, 2002;11:743–753.

    Article  CAS  Google Scholar 

  154. Poilane, C., Delobelle, P., Bornier, L., Mounaix, P., Melique, X., and Lippens, D., Determination of the Mechanical Properties of Thin Polyimide Films Deposited on a GaAs Substrate by Bulging and Nanoindentation Tests, Materials Science & Engineering A, 1999;262:101–106.

    Article  Google Scholar 

  155. Small, M.K., Use of the Bulge Test in Measuring the Mechanical Properties of Thin Films, Ph.D. Thesis, Department of Materials Science and Engineering, Stanford University, Stanford, CA, 1992.

    Google Scholar 

  156. Small, M.K. and Nix, W.D., Analysis of the Accuracy of the Bulge Test in Determining the Mechanical Properties of Thin Films, J. Mater. Res., 1992;7:1553–1563.

    Article  CAS  Google Scholar 

  157. Allen, M.G., Measurement of Adhesion and Mechanical Properties of Thin Films Using Microfabricated Structures, Ph.D Thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1989.

    Google Scholar 

  158. Maseeh-Tehrani, F., Characterization of Mechanical Properties of Microelectronic Thin Films, Ph.D. Thesis, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1990.

    Google Scholar 

  159. Bochobza-Degani, O., Socher, E., Lipson, A., Leitner, T., Setter, D., Kaldor, S., and Nemirovsky, Y., Pull-In Study of an Electrostatic Torsion Microactuator, IEEE J. Microelectromechanical Systems, 1998;7: 378–379.

    Google Scholar 

  160. Nemirovsky, N. and Bochobza-Degani, O., A Methodology and Model for the Pull-In Parameters of Electrostatic Actuators, IEEE J. Microelectromechanical Systems, 2001;10:601–615.

    Article  Google Scholar 

  161. Osterberg, P.M., Electrostatically Actuated Microelectromechanical Test Structures for Material Property Measurement, Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1995.

    Google Scholar 

  162. Osterberg, P.M. and Senturia, S.D., M-TEST: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures, IEEE J. Microelectromechanical Systems, 1997;6:107–118.

    Article  Google Scholar 

  163. Cheng, J., Zhe, J., Wu, X., Farmer, K., Modi, V., and Frechette, L., Analytical and FEM Simulation Pull-in Study on Deformable Electrostatic Micro Actuators, Technical Proc. of the International Conf on Modeling and Simulation of Microsystems, MSM, 2002, pp. 298–301.

    Google Scholar 

  164. Chen, K.-S., Li, L.-M., and Ou, K.-S, Accuracy Assessment of Simplified Electromechanical Coupling Solvers for MEMS Applications J. Micromechanics & Microengineering, 2004;14:159–169.

    Article  Google Scholar 

  165. Hung, E.S. and Senturia, S.D., Extending the Travel Range of Analog-Tuned Electrostatic Actuators, IEEE J. Microelectromechanical Systems, 1999;8:497–505.

    Article  Google Scholar 

  166. Gupta, R.K., Osterberg, P.M., and Senturia, S.D., Material Properties Measurements of Micromechanical Polysilicon Beams, SPIE Conference, Microlithography and Metrology in Micromachining II, Oct. 14–15, 1996.

    Google Scholar 

  167. Veijola, T., Ryhanen, T., Kuisma, H., and Lahdenpera, J., Circuit Simulation Model of Gas Damping in Microstructures with Nontrival Geometries, Proc. Transducers’ 95, Stockholm, Sweden, 1995, Vol. II, pp. 36–39.

    Google Scholar 

  168. Gupta, R.K., Electrostatic Pull-In Test Structure Design for In-Situ Mechanical Property Measurements of microelectromechanical Systems (MEMS), Ph.D. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1997.

    Google Scholar 

  169. De Wolf, I., Maes, H.E., and Jones, S.K., Stress Measurements in Silicon Devices Through Raman Spectroscopy: Bridging the Gap between Theory and Experiment, J. Appl. Phys., 1996;79:7148–7156.

    Article  Google Scholar 

  170. van Spengen, W.M., De Wolf, I., and Knechtel, R., Proc. SPIE Micromachining and Microfabrication, Sep. 2000.

    Google Scholar 

  171. Starman, L.A., Ochoa, E.M., Lott, J.A., Amer, M.S., Cowan, W.D., and Busbee, J.D., Residual Stress Characterization in MEMS Microbridges using Micro-Raman Spectroscopy, in Proc. Nanotech, 2002, 2002, pp. 764.

    Google Scholar 

  172. Starman, L.A., Lott, J.A., Amer, M.S., Cowan, W.D., and Busbee, J.D., Stress Characterization of MEMS Microbridges by Micro-Raman Spectroscopy, Sensors and Actuators A, 2003;104:107–116.

    Article  CAS  Google Scholar 

  173. Cho, H.J., Oh, K.W., Ahn, C.H., Boolchand, P., and Nam, T.-C., Stress Analysis of Silicon Membranes with Electroplated Permalloy Films Using Raman Scattering, IEEE Trans. Magnetics, 2001;37:2749–2751.

    Article  CAS  Google Scholar 

  174. Gogotsi, Y., Baek, C., and Kirscht, F., Raman Microspectroscopy Study of Processing-induced Phase Transformations and Residual Stress in Silicon, Semicond. Sci. Technol., 1999;14:936–944.

    Article  CAS  Google Scholar 

  175. Ikehara, T., Zwijze, R.A.F., and Ikeda, K., New Method for an Accurate Determination of Residual Strain in Polycrystalline Silicon Films by Analyzing Resonant Frequencies of Micromachined Beams, J. Micromechanics and Microenineering, 2001;11:55–60.

    Article  Google Scholar 

  176. Blevin, R.D., Formulas for Natural Frequency and Mode Shape, R.E. Kreiger Publishing Co., Malabar, FL, 1984.

    Google Scholar 

  177. Tilmans, H.A.C., Elwenspoek, M., and Fluitman, J.H., Sensors Actuators A, 1992;30:35–53.

    Article  Google Scholar 

  178. Wylde, J. and Hubbard, T.J., Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering, Shaw Conference Center, Edmonton, Alberta, Canada, May 9–12, 1999, p. 1674.

    Google Scholar 

  179. Zhang, L.M., Uttamchandani, D., and Culshaw, B., Measurement of the Mechanical Properties of Silicon Microresonators, Sensors and Actuators A, 1991;29:79–84.

    Article  Google Scholar 

  180. Kim, Y.-J. and Allen, M.G., In Situ Measurement of Mechanical Properties of Polyimide Films Using Micromachined Resonant String Structures, IEEE Transactions on Components and Packaging Technology, 1999;22:282–290.

    Article  CAS  Google Scholar 

  181. Yang, Y.J., Squeeze-Film Damping for MEMS Structures, S.M. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1997.

    Google Scholar 

  182. Manceau, J., Robert, L., Bastien, F., Oytana, C., and Biwersi, S., Measurement of Residual Stresses in a Plate using a Vibrational Technique: Application to Electrolytic Nickel Coatings, IEEE J. Microelectromechanical. Systems, 1996;5:243–249.

    Article  CAS  Google Scholar 

  183. Dally, J.W. and Riley, W.F., Experimental Stress Analysis, 3rd Ed., McGraw-Hill, New York, 1991.

    Google Scholar 

  184. Chasiotis, I. and Knauss, W.G., Mechanical Properties of Thin Polysilicon Films by Means of Probe Microscopy, Proc. SPIE, 1998;3512:66–75.

    Article  CAS  Google Scholar 

  185. Anwander, M., Kaindl, G., Klein, M., and Weiss, B., Noncontacting Laser based Techniques for the Determination of Elastic Constants of Thin Folis, Micromat, Berlin, Germany, April 17–19, 2000, pp. 1100–1103.

    Google Scholar 

  186. Chang, S., Warren, J., and Chiang, F.-P., Mechanical Testing of EPON SU-8 with SIEM, in Microscale Systems: Mechanical and Measurement Symposium, Society of Experimental Mechanics, Orlando, FL, USA, June 8, 2000, pp. 46–49.

    Google Scholar 

  187. O’Mahony, C., Hill, M., Brunet, M., Duane, R., and Mathewson, A., Characterization of Micromechanical Structures Using White-Light Interferometry, Measurement Science and Technology, 2003;14:1807–1814.

    Article  CAS  Google Scholar 

  188. Kuball, M., Morrissey, F.H., Benyoucef, M., Harrison, I., Korakakis, D., and Foxon, C.T., Nano-Fabrication of GaN Pillars Using Focused Ion Beam Etching, Phys. Stat. Sol. (a), 1999;176:355.

    Article  CAS  Google Scholar 

  189. Li, B., Xie, H., Xu, B., Geer, R., and Castrance, J., Investigation of Strain in Microstructures by a Novel Moire Method, IEEE. J. Microelectromechanical Systems, 2002;11:829–836.

    Article  CAS  Google Scholar 

  190. Li, B., Tang, X., Xie, H., and Zhang, X., Strain Analysis in MEMS/NEMS Structures and Devices by Using Focused Ion Beam System, Sensors and Actuators A, 2004;111:57–62.

    Article  CAS  Google Scholar 

  191. Zhang, T.-Y., Chen, L.-Q., and Fu, R., Measurements of Residual Stresses in Thin Films Deposited on Silicon Wafers by Indentation Fracture, Acta mater. 1999;47:3869–3878.

    Article  CAS  Google Scholar 

  192. Oliver, W.C. and Pharr, G.M., An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Materials Research, 1992;7:1564.

    Article  CAS  Google Scholar 

  193. Tsou, C. and Fang, W., Interfaces Friction Effect of Sliding Contact for Nanoindentation Test, Proc. the 26th Conference on Theoretical and Applied Mechanics, Yunglin, Taiwan, December, 2002.

    Google Scholar 

  194. Chollacoop, N., Dao, M., and Suresh, S., Depth-sensing Instrumented Indentation with Dual Sharp Indenters, Acta mater., 2003;51:3713–3729.

    Article  CAS  Google Scholar 

  195. Chaudhri, M.M. and Phillips, M.A., Quasi-static Cracking of Thermally Tempered Soda-lime Glass with Sophrical and Vickers Inderters, Phil. Mag., 1990;A62:1–27.

    Google Scholar 

  196. Chandrasekhar, S. and Chaudhri, M.M., Indentation Cracking in Soda-lime Glass and Ni-Zn Ferrite Under Knopp and Conical Indenters and Residual Stress Measurements, Phil. Mag., 1993;A67:1187–1218.

    Google Scholar 

  197. Tsui, T.Y., Oliver, W.C., and Pharr, P.M., Influence of Stress on the Measurement of Mechanical Properties Using Nanoindentation: Part I: Experimental Studies in an Aluminum Alloy, J. Materials Research, 1996;11:752–759.

    CAS  Google Scholar 

  198. Bolshakov, A., Oliver, W.C., and Pharr, G.M., Influence of Stress on the Measurement of Mechanical Properties Using Nanoindentation: Part II: Finite Element Simulations, J. Materials Rsearch, 1996;11:760–768.

    CAS  Google Scholar 

  199. Taljat, B. and Pharr, G.M., Measurement of Residual Stresses by Load and Depth Sensing Spherical Indentation, Mat. Res. Soc. Symp. Proc., 2000;594:519–524.

    Google Scholar 

  200. Greek, S. and Chitica, N., Deflection of Surface-Micromachined Devices Due to Internal, Homogeneous or Gradient Stresses, Sensors & Actuators A, 1999;78:1–7.

    Article  Google Scholar 

  201. Sattler, R., Voigt, P., Pradel, H., and Wachutka, G., Innovative Design and Modelling of a Micromechanical Relay with Electrostatic Actuation, J. Micromechanics and Microengineering, 2001;11:428–433.

    Article  Google Scholar 

  202. Coventor//User Handbook, Coventor Inc., 2001.

    Google Scholar 

  203. Johnson, G.C. and Krulevitch, P., Stress Gradients in Thin Films Used in Micro-Electro-Mechanical Systems, American Society of Mechanical Engineers, Dynamic Systems and Control Division, DSC, 1993;46: 89–95.

    Google Scholar 

  204. Ghodssi, R., Frechette, L., Nagle, S., Zhang, X., Ayon, A., Senturia, S., and Schmidt, M., Thick Buried Oxide in Silicon (TBOS): An Integrated Fabrication Technology for Multi-Stack Wafer-Bonded MEMS Processes, Proceedings of the 1999 International Conference on Solid-State Sensors and Actuators, Sendai, Japan, June 1999, pp. 1456–1459.

    Google Scholar 

  205. Schliwinski, H.J., Schnakenberg, U., and Windbracje, W., Thermal Annealing Effect on the Mechanical Properties of Plasma-Enhanced Chemical Vapor Deposited Silicon Oxide Film, J. Electrochem. Soc., 1992;139:1730–1735.

    Article  CAS  Google Scholar 

  206. Tarraf, A., Daleiden, J., Irmer, S., Prasai, D., and Hillmer, H., Stress Investigation of PECVD Dielectric Layers for Advanced Optical MEMS, J. Micromechanics and Microengineering, 2004;14:317–323.

    Article  Google Scholar 

  207. Bifano, T.G., Johnson, H.T., Bierden, P., and Mali, R.K., Elimination of Stress-Induced Curvature in Thin-Film Structures, IEEE J. Microelectromechanical Systems, 2002;11:592–597.

    Article  Google Scholar 

  208. Zhang, S., Johnson, H.T., Wagner, G.J., Liu, W.K., and Hsia, K.J., Stress Generation Mechanisms in Carbon Thin Films Grown by Ion-Beam Deposition, Acta Materialia, 2003;51:5211–5222.

    Article  CAS  Google Scholar 

  209. Ho, Y.-P., The Study of MEMS Self-Assembly Technology, SM Thesis, Dept. Power Mechanical Engineering, National Tsing-Hua University, Taiwan, 2002.

    Google Scholar 

  210. Chen, R.-T., Nguyen, H., and Wu, M.-C., A High-Speed Low-Voltage Stress-Induced Micromachined 2 × 2 Optical Switch, IEEE Photonics Technology Letters, 1999;11:1396–1398.

    Article  Google Scholar 

  211. Chinthakindi, A.K., Bhusari, D., Dusch, B.P., Musolf, J., Willemsen, B.A., Prophet, E., Roberson, M., and Kohla, P.A., Electrostatic Actuators with Intrinsic Stress Gradient I. Materials and Structures, J. Electrochemical Society, 2002;149:H139–145.

    Article  CAS  Google Scholar 

  212. Chinthakindi, A.K. and Kohl, P.A., Electrostatic Actuators with Intrinsic Stress Gradient II: Performance and Modeling, J. Electrochemical Society, 2002;149:H146–152.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Chen, KS. (2006). Techniques in Residual Stress Measurement for MEMS and Their Applications. In: Leondes, C.T. (eds) MEMS/NEMS. Springer, Boston, MA. https://doi.org/10.1007/0-387-25786-1_33

Download citation

Publish with us

Policies and ethics