Skip to main content

Micro-machined Passive Valves: Fabrication Techniques, Characterisation and their Application

  • Chapter
MEMS/NEMS

Abstract

In the past decade, considerable effort has been devoted to microelectromechanical systems (MEMS), more commonly known in Europe as microsystem technologies (MST). Silicon micromachining has become a fundamental tool that enables the fabrication of such devices. The technology has evolved from integrated circuit fabrication processes, namely film formation, doping, lithography and etching. In general, silicon micromachining can be subdivided into two categories, bulk and surface machining. In bulk micromachining, three dimensional features and micromechanical devices are realised out of single crystal silicon wafers. In contrast, surface micromachining employs thin-film layers on the substrate surface and generally involves dimensions smaller than those of bulk micromachined devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Madou, M., Fundamentals of Microfabrication—The Science of Miniaturization, 2nd Ed., CRC Press LLC, 2002.

    Google Scholar 

  2. Gast, F.U. and Feihn, H., The Development of Integrated Microfluidic Systems at GeSiM, Lab On A Chip, 2003, pp. 6–10.

    Google Scholar 

  3. Shoji, S. and Esashi, M., Microflow Devices and Systems, J. Micromech. Microeng., 1994;4:151–171.

    Article  Google Scholar 

  4. Gravesen, P., Branebjerg, J., and Jensen, O.S., Microfluidics a Review, J. Micromech. Microeng., 1993;3: 168–182.

    Article  CAS  Google Scholar 

  5. Koch, M., Evans, A.G.R., and Brunnschweiler, A., Characterisation of Micromachined Cantilever Valves, J. Micromech. Microeng., 1997;7(3):221–223.

    Article  CAS  Google Scholar 

  6. Ohnstein, T., Fukiura, T., Ridley, J., and Boorne, U., Micromachined Silicon Microvalve, Proc. IEEE Micro Electro Mechanical Systems, 1990, pp. 95–98.

    Google Scholar 

  7. Esashi, M., Shoji, S., and Nakano, A., Normally Closed Microvalve and Micropump Fabricated on a Silicon Wafer, Sensors and Actuators, 1989;20:163–169.

    Article  Google Scholar 

  8. Tiren, J., Tenerz, L., and Hok, B., A Batch Fabricated Non-reverseValve with Cantilever Beam Manufactured by Micromachining of Silicon, Sensors and Actuators, 1989;18:389–396.

    Article  Google Scholar 

  9. Heschel, M., Müllenborn, M., and Bouwstra, S., Fabrication and Characterisation of Truly 3-D Diffuser/nozzle Microstructures in Silicon, J. Microelectromechanical Systems, 1997;6(1):41–47.

    Article  CAS  Google Scholar 

  10. Hu, M., Du, H., Ling, S., Fu, Y., Chen, Q., Chow, L., and Li, B., A Silicon-on-Insulator Based Micro Check Valve, J. Micromech. Microeng., 2004;14:382–387.

    Article  CAS  Google Scholar 

  11. Paul, B.K. and Terhaar, T., Comparison of Two Passive Microvalve Designs for Microlamination Architectures, J. Micromech. Microeng., 2000;10(1):15–20.

    Article  CAS  Google Scholar 

  12. Shoji, S. and Esahi, M., Fabrication of a Micropump for Integrated Chemical Analysing Systems, Electronics and Communication in Japan, 1989;72(10):52–59.

    Article  Google Scholar 

  13. Xu, B., Castracane, J., Geer, R., Yao, Y., and Altemus, B., Process Development and Fabrication of Application Specific Micro-valves, Proc. of SPIE, 2000, Vol. 4174, pp. 299–306.

    Article  CAS  Google Scholar 

  14. Vandelli, N., Wroblewski, D., Velonis, M., and Bifano, T., Development of a MEMS Microvalve Array for Fluid Flow Control, J. Microelectromech. Systems, 1998;7:395–402.

    Article  Google Scholar 

  15. Sim, W.Y., Yoon, H.J., Jeong, O.C., and Yang, S.S., A Phase-change Type MicropumpWith Aluminum Flap Valve, J. Micromech. Microeng., 2003;13:286–294.

    Article  Google Scholar 

  16. Wang, X., Zhou, Z., and Zhang, W., A Micro Valve Made of PSPI, Proc. of ASME Microelectromechanical Systems (MEMS), 1998, pp. 31–36.

    Google Scholar 

  17. Goll, C., Bacher, W., Büstgens, B., Maas, D., Menz, W., and Schomburg, W.K., Microvalves with Bistable Buckled Polymer Diaphragms, J. Micromech. Microeng., 1996;6:77–79.

    Article  CAS  Google Scholar 

  18. Wang, X., Lin, Q., and Tai, Y., Parylene Micro Check Valve, Proc. of IEEE Micro Electro Mechanical Systems (MEMS), 1999, pp. 177–182.

    Google Scholar 

  19. Wang, X. and Tai, Y., Normally Closed In-channel Micro Check Valve, Proc. of the IEEE Micro Electromechanical Systems (MEMS), 2000, pp. 68–73.

    Google Scholar 

  20. Feng, G. and Kim, E.S., Micropump Based on PZT Unimorph and One-way Parylene Valve, J. Micromech. Microeng., 2004;14:429–435.

    Article  Google Scholar 

  21. Yang, X., Grosjean, C., and Tai, Y., Normally Closed In-channel Micro Check Valve, J. Microelectromechanical Systems, 1999;8(4):393–402.

    Article  CAS  Google Scholar 

  22. Shoji, S., van der Schoot, B.H., de Rooij, N.F., and Esashi, M., A Study of High Pressure Micropump for Integrated Chemical Analysing Systems, Sensors and Actuators A, 1992;32:335–339.

    Article  Google Scholar 

  23. Nguyen, N.T., Truong, T.Q., Wong, K.K., Ho, S.S., and Low, C.L.N., Micro Check Valves for Integration into Polymeric Microfluidic Devices, J. Micromech. Microeng., 2004;14:69–75.

    Article  Google Scholar 

  24. Voigt, P., Schrag, G., and Wachutka, G., Microfluididc Full-system Modelling of a Flap Valve Micropump Based on Kirchhoffian Network Theory, Sensors and Actuators A, 1998;66:9–14.

    Article  Google Scholar 

  25. Ristic, L., Sensor Technology and Devices, Artech House, 1994.

    Google Scholar 

  26. Alley, R.L., Cuan, G.J., Howe, R.T., and Komvopoulos, K., The Effect of Release-etch Processing on Surface Microstructure Stiction, Digest Tech. Papers, Solid-State Sensor and Actuator Workshop, 1992, pp. 202–207.

    Google Scholar 

  27. Ohtsu, M., Shirohata, H., Minami, K., and Esashi, M., Drying of Self-supported Thin Film Structures after Rinsing in Small Surface Tension Liquid, Tech. Digest 13th Sensor Symp., 1995, pp. 33–36.

    Google Scholar 

  28. Van Lintel, H.T.G., Van De Pol, F.C.M., and Bouwstra, S., A Piezoelectric Micropump Based on Micromachining of Silicon, Sensors and Actuators, 1998;15:153–167.

    Article  Google Scholar 

  29. Yang, E.H., Han, S.W., and Yang, S.S., Fabrication and Testing of a Pair of Passive Bivalvular Microvalves Composed of p+ Silicon Diaphragms, Sensors and Actuators A, 1996;57:75–78.

    Article  Google Scholar 

  30. Bien, D.C.S., Mitchell, S.J.N., and Gamble, H.S., Fabrication and Characterisation of a Micromachined Passive Valve, J. Micromech. Microeng., 2003, Vol. 13, pp. 557–562.

    Article  Google Scholar 

  31. Bien, D.C.S., Mitchell, S.J.N., and Gamble, H.S., Fabrication and Characterisation of a Novel Microvalve for Microfluidic Applications, SPIE J. Microlitho. Microfab. And Microsys., 2004, Vol. 3, No. 3.

    Google Scholar 

  32. Bien, D.C.S., Mitchell, S.J.N., Gamble, H.S., and Fitzgerald, S.P., Passive Microvalve, European Patent Application, EP1296607, 2002.

    Google Scholar 

  33. Bien, D.C.S., Micromachined Valves and Pump for Microfluidic Applications, Ph.D. Theses, Queens University, Belfast, UK, 2002.

    Google Scholar 

  34. Gerlach, T., Microdiffusers as Dynamic Passive Valves for Micropump Applications, Sensor and Actuators A, 1998;69:181–191.

    Article  Google Scholar 

  35. Jiang, X.N., Zhou, Z.Y., Huang, X.Y., Li, Y., Yang, Y., and Liu, C.Y., Micronozzle/diffuser Flow and Its Application in Micro-valveless Pump, Sensors and Actuators A, 1998;70:81–87.

    Article  Google Scholar 

  36. Koch, M., Evans, A.G.R., and Brunnschweiler, A., The Dynamic Micropump Driven with a Screen Printed PZT Actuator, J. Micromech. Microeng., 1998;8:119–122.

    Article  CAS  Google Scholar 

  37. Olsson, A., Larson, O., Holm, J., Lundbladh, L., Öhman, O., and Stemme, G., Valve-less Diffuser Micropumps Fabricated Using Thermoplastic Replication, Sensors and Actuators A, 1998;64:63–68.

    Article  Google Scholar 

  38. Olsson, Larson, O., Stemme, G., and Stemme, E., A Numerical Design Study of the Valveless Diffuser Pump Using a Lumped-mass Model, J. Micomech. Microeng., 1999;9:34–44.

    Article  CAS  Google Scholar 

  39. Ugural, A.C., Stresses in Plates and Shells, 2nd Ed., New York: McGraw-Hill, 1999.

    Google Scholar 

  40. Timoshenko, S. and Woinosky-Krieger, S., Theory of Plates and Shells, 6th Ed., New York: McGraw Hill, 1987.

    Google Scholar 

  41. Gere, J.M., Mechanics of Materials, 5th Ed., Brooks/Cole, 2001.

    Google Scholar 

  42. Suhir, E., Structural Analysis in Microelectronic and Fiber-Optics System, New York: Van Nostrand Reinhold, 1991, Vol. 1.

    Google Scholar 

  43. Papavasiliou, A.P., Liepmann, D., and Pissano, A.P., Fabrication of a Free Floating Silicon Gate Valve, Proc. IMEC, 1999.

    Google Scholar 

  44. Quero, J.M., Luque, A., and Franguelo, F.G., A Novel Pressure Balanced Microfluidic Valve, Proc. ISCAS, 2002.

    Google Scholar 

  45. Xu, Y., Choong, W.O., Tay, F.E., Zhang, X., Kong, Y., and Gong, H., Simulations of a Microvalve and a Micropump, Proc. of SPIE, 2001, Vol. 4560, pp. 53–60.

    Article  Google Scholar 

  46. Panton, R.L., Incompressible flow, Wiley—Intersciense Publication, 1984.

    Google Scholar 

  47. Aksel, M.H. and Eralp, O.C., Gas Dynamics, Prentice Hall Publication, 1994.

    Google Scholar 

  48. Cambel, A.B. and Jennings, B.H., Gas Dynamics, McGraw-Hill Series in Mechanical Engineering, McGraw-Hill Book Co., 1958.

    Google Scholar 

  49. Seidel, H., Csepregi, L., Heuberger, A., and Baumgärtel, H., Anisotropic Etching of Crystalline Silicon in Alkaline Solutions—I. Orientation Dependence and Behavior of Passivation Layers, J. Electrochem. Soc., 1990;137(11):3612–3626.

    Article  CAS  Google Scholar 

  50. Elwenspoek, M., and H.V., Jansen, Silicon Micromachining, Cambridge University Press, 1998.

    Google Scholar 

  51. Tabata, O., Proc. Transducer’ 95, Stockholm, June 25–29, 1995, pp. 83–86.

    Google Scholar 

  52. Williams, K.R. and Muller, R.S., Etch Rates for Micromachining Processing, J. Microelectromech. Systems, 1996;5(4);256.

    Article  CAS  Google Scholar 

  53. Tan, S., Han, H., Boudreau, R., and Reed, M.L., Proc. MEMS’ 94, Oiso, Japan, 1998:229.

    Google Scholar 

  54. Tan, S., Reed, M.L., Han, H., and Boudreau, R., Mechanisms of Etch Hillock Formation, J. Microelectromech. Systems, 1996;5:66.

    Article  CAS  Google Scholar 

  55. Tan, S., Reed, M.L., Han, H., and Boudreau, R., Morphology of Etch Hillock Defects Created During Anisotropic Etching of Silicon, J. Micromech. Microeng., 1994;4:147–156.

    Article  CAS  Google Scholar 

  56. Gosálvez, M.A. and Nieminen, R.M., Surface Morphology During Anisotropic wet Chemical Etching of Crystalline Silicon, New J. of Phys., 2003;5.

    Google Scholar 

  57. Baum, T. and Schiffrin, D.J., AFM Study of Surface Finish Improvement by Ultrasound in the Anisotropic Etching of Si < 100 > in KOH for Micromachining Applications, J. Micromech. Microeng., 1997:382.

    Google Scholar 

  58. Chen, J., Liu, L., Li, Z., Tan, Z., Jiang, Q., Fang, H., Xu, Y., and Liu, Y., Study of Anisotropic Etching of (100) Si with Ultrasonic Agitation, Sensors and Actuators A, 2002;96:152.

    Article  Google Scholar 

  59. Landsberger, L.M., Naseh, S., Kahrizi, M., and Paranjape, M., J. Microelectromech. Systems, 1996;5:106.

    Article  CAS  Google Scholar 

  60. Schröder, H., Obermeier, E., and Steckenborn, A., Effects of the Etchmask Properties on the Anisotropy Ratio in Anisotropic Etching of (100) Silicon in Aqueous KOH, J. Micromech. Microeng., 1998;8(1):99.

    Article  Google Scholar 

  61. Campbell, S.A. and Lewerenz, H.J., Semiconductor Micromachining: Techniques and Industrial Applications, WILEY, 1998, Vol. 2.

    Google Scholar 

  62. Greenwood, J.C., Ethylene Diamine-cathecol-water Mixture Shows Preferential Etching of p-n Junction, J. Electrochem. Soc., 1969;116:1325–1326.

    Article  Google Scholar 

  63. Bogh, A., Ethylene Diamine-pyrocathecol-water Mixture Shows Etching Anomaly in Boron-doped Silicon, J. Electrochem. Soc., 1971;118:401–402.

    Article  Google Scholar 

  64. Seidel, H., Csepregi, L., Heuberger, A., and Baumgärtel, H., Anisotropic Etching of Crystalline Silicon in Alkaline Solutions—II.: Influence of Dopants J. Electrochem. Soc., 1990;137(11):3625–3632.

    Google Scholar 

  65. Zant, P.V., Microchip Fabrication, 4th Ed., McGraw-Hill, 2000.

    Google Scholar 

  66. Campbell, S.A., The Science and Engineering of Microelectronic Fabrication, Oxford University Press, 1996.

    Google Scholar 

  67. Nalco Company, Naperville USA (http://www.nalco.com).

    Google Scholar 

  68. Bien, D.C.S., Mitchell, S.J.N., and Gamble, H.S., Characterisation of Masking Materials for Deep Glass Micromachining, J. Micromech. Microeng., 2003;13:34–40.

    Article  Google Scholar 

  69. Krulevitch, P.A., Micromechanical Investigations of Silicon and Ni-Ti-Cu Thin Films, Ph.D. thesis, University of California, Berkeley, 1994.

    Google Scholar 

  70. Guckel, H., Randazzo, T., and Burns, D.W., A Simple Technique for the Determination of Mechanical Strain in Thin Films with Applications to Polysilicon, J. Appl. Phys., 1985;57:1671–1675.

    Article  CAS  Google Scholar 

  71. Guckel, H., Burns, D.W., Tilmans, H.A.C., DeRoo, D.W., and Rutigliano, C.R., IEEE Solid State Sensor and Actuator Workshop, 1988, Vol. 57, pp. 96.

    Article  Google Scholar 

  72. Howe, R.T. and Muller, R.S., Stress in Polycrystalline and Amorphous Silicon Thin Films, J. Appl. Phys., Vol. 54, 1983, pp. 4674–4675.

    Article  CAS  Google Scholar 

  73. Gad-el-Hak, M., The MEMS Handbook, CRC Press, 2002.

    Google Scholar 

  74. Hoffman, R.W., Mechanical Properties of Non-metallic Thin Films, in Physics of Nonmetallic Thin Films (NATO Advanced Study Institutes Series: Series B, Physics), C.H.S. Dupuy and A.A. Cachard (Eds.), New York: Plenum Press, 1976, pp. 273–353.

    Google Scholar 

  75. Lin, L., Selective Encaps Ulation of MEMS: Micro Channels, Needles, Resonators and Electromechanical Filters, PhD theses, University of California at Berkley, 1993.

    Google Scholar 

  76. Kim, C.J., Silicon Electromechanical Microgrippers: Design, Fabrication, at Testing, PhD theses, University of California at Berkley, 1991.

    Google Scholar 

  77. Benitez, M.A.B., Esteve, J., Benrakkad, M.S., Morante, J.R., Samitier, J., and Schweitz, J.A., Stress Profile Characterisation and Test Structures Analysis of Single and Double ion Implanted LPCVD Polycrystalline Silicon, Proc. of 8th Int. Conf. on Solid State Sensors and Actuators (Transducer 95), 1995, pp. 88–91.

    Google Scholar 

  78. Ericson, F., Greek, S., Soderkvist, J., and Schweitz, J.A., High Sensitive Internal Film Stress Measurement by an Improved Micromachined Indicator Structure, Proc. of 8th Int. Conf. on Solid State Sensors and Actuators (Transducer 95), 1995, pp. 84–87.

    Google Scholar 

  79. Sekimoto, M., Yoshihara, H., and Ohkubo, T., Silicon Nitride Single Layer x-ray Mask, J. Vac. Sci. Technol., 1982;57:1017–1021.

    Article  Google Scholar 

  80. Guckel, H., Burns, D.W., Visser, C.C.G., Tilmans, H.A.C., DeRoo, D.W., and Rutigliano, C.R., Fine-grained Polysilicon Films with Built in Tensile Strain, IEEE Trans. Electron Devices, 1988;35:800–801.

    Article  CAS  Google Scholar 

  81. Biebl, M., Brandl, G., and Howe, R.T., Young’s Modulus of In-situ Phosphorous Doped Polysilicon, Proc. of 8th Int. Conf. on Solid State Sensors and Actuators (Transducer 95), 1995, pp. 80–83.

    Google Scholar 

  82. Core, T.A., Tsang, W.K., and Sherman, S.J., FabricationTechnology for an Integrated Surface Micromachined Sensor, Solid State Tech., 1993;36:39–47.

    CAS  Google Scholar 

  83. Chu, W.H., Mehregany, M., Ning, X., and Pirouz, P., Measurement of Residual Stress Induced Bending Moment of p+ Silicon Films, Mat. Res. Soc. Symp., 1992;239:169.

    CAS  Google Scholar 

  84. Fan, L.S., Muller, R.S., Yuan, W., Huang, J., and Howe, R.T., Spiral Microstructures for the Measurement of Average Strain Gradients in Thin Films, Proc. IEEE Micro Electro Mechanical Systems (MEMS 90), 1990, pp. 177–181.

    Google Scholar 

  85. Kuoni, A., Holzherr, R., Boilatt, M., and de Rooij, N.F., Polyimide Membrane with ZnO Piezoelectric Thin Film Pressure Transducers as a Differential Pressure Liquid Flow Sensor, J. Micromech. and Microeng., 2003, Vol. 13, pp. 34–40.

    Article  Google Scholar 

  86. Sugiyama, S., Shimaoka, K., and Tabata, O., Surface Micromachined Micro-diaphragm Pressure Sensors, Transducer’ 91 Tech. Dig., 1991, pp. 188–191.

    Google Scholar 

  87. Scheeper, P.R., Olthuis, W., and Bergveld, P., Fabrication of a Subminiature Silicon Condenser Microphone Using the Sacrificial Technology, Transducer’ 91 Tech. Dig., 1991, pp. 408–411.

    Google Scholar 

  88. Bagolini, A., Pakula, L., LMScholtes, T., Pham, H.T.M., French, P.J., and Sarro, P.M., Polyimide Sacrificial Layer and Novel Materials for Post-processing Surface Micromachining, J. Micromech. and Microeng., 2002;12:385–389.

    Article  CAS  Google Scholar 

  89. Ruddell, F., SEM Image of Birds Beak after LOCOS Process—Internal Communication.

    Google Scholar 

  90. Enomoto, T., Ando, R., Morita, H., and Nakayama, N., Thermal Oxidation Rate of a Si3N4 Film and Its Masking Effect Against Oxidation of Silicon, Jpn. J. Appl. Phys., 1978, Vol. 17, No. 6, pp. 1049–1058.

    Article  CAS  Google Scholar 

  91. Tas, N., Sonnenberg, T., Jansen, H., Legtenberg, R., and Elwenspoek, M., Stiction in Surface Micromachining, J. Micromech. Microeng., 1996;6:385–397.

    Article  CAS  Google Scholar 

  92. Guckel, H., Sniegowsky, J.J., and Christenson, T.R., Advances in Processing Techniques for Silicon Microelectromechanical Devices with Smooth Surfaces, Proc. of IEEE Micro Electro Mechanical Systems, 1989, pp. 71–75.

    Google Scholar 

  93. Mulhern, G.T., Soanne, D.S., and Howe, R.T., Supercritical Carbon Dioxide Drying of Microstructure, Proc. 7th Int. Conf. on Solid-State Sensors and Actuators (Transducer 93), 1993, pp. 296–299.

    Google Scholar 

  94. Takeshima, N., Gabriel, K.J., Ozaki, M., Takahashi, J., Horiguchi, H., and Fujita, H., Electrostatic Parallelogram Actuators, Proc. 6th Int. Conf. on Solid-State Sensors and Actuators (Transducer 91), 1991, pp. 63–66.

    Google Scholar 

  95. Kobayashi, D., Hirano, T., Furuhata, T., and Fujita, H., An Integrated Lateral Tunnelling Unit, Digest Tech. Papers, 7th Ann. Int. Workshop on MEMS, 1992, pp. 214–219.

    Google Scholar 

  96. Houston, M.R., Maboudian, R., and Howe, R.T., Ammonium Fluoride Anti-stiction Treatments for Polysillicon Microstructures, Digest Tech. Papers, 8th Int. Conf. Solid-State Sensors and Actuators (Transducer 95), 1995, Vol. 2, pp. 210–213.

    Article  Google Scholar 

  97. Witvrouw, A., Du Bois, B., De Moor, P., Verbist, A., Van Hoof, C., Brender, H., and Baert, K., A Comparison Between Wet HF Etching and Vapour HF Etching for Sacrificial Oxide Removal, Proc. of SPIE, 2000, Vol. 4174, pp. 130–141.

    Article  CAS  Google Scholar 

  98. Jang, W.I., Choi, C.A., Lee, M.L., Jun, C.H., and Kin, Y.T., Fabrication of Surface Micromachined Thermally Driven Micropump by Anhydrous HF Gas-phase Etching with 2-propanol, Proc. of SPIE, 2000, Vol. 4174, pp. 444–450.

    Article  CAS  Google Scholar 

  99. Bühler, J., Steiner, F-P., and Baltes, H., Silicon Dioxide Sacrificial Layer Etching in Surface Micromachining, J. Micromech. Microeng., 1997;7:1–13.

    Article  Google Scholar 

  100. Fan, L.S., Tai, Y.C., and Muller, R.S., IC Processed Electrostatic Micro-motors, Proc. IEEE Int. Electron Devices Meeting, 1988, pp. 666–669.

    Google Scholar 

  101. Sandejas, F.S.A., Apte, R.B., Banyai, W.C., and Bloom, D.M., Surface Microfabrication of Deformable Grating Light Valves for High Resolution Displays, Proc. 7th Int. Conf. on Solid-State Sensors and Actuators (Transducer 93), 1993, pp. 6–7.

    Google Scholar 

  102. Alley, R.L., Mai, P., Komovopoulos, K., and Howe, R.T., Surface Roughness Modification of Interfacial Contacts in Polysilicon Microstructures, Proc. 7th Int. Conf. on Solid-State Sensors and Actuators (Transducer 93), 1993, pp. 228–291.

    Google Scholar 

  103. Mastrangello, C.H. and Saloka, G.S., A Dry Release Method Based on Polymer Columns of Microstructure Fabrication, Proc. IEEE Solid-State Sensors and Actuator Workshop, 1993, pp. 77–81.

    Google Scholar 

  104. Koch, M., Silicon Micromachined Pumps Employing Piezoelectric Actuation for Microfluidic Systems, PhD Thesis, University of Southampton UK.

    Google Scholar 

  105. Bien, D.C.S., Mitchell, S.J.N., Gamble, H.S., Characterisation of Microfluidic Devices, Proc. of Int. Conf. of Microelectronic Test Structure (ICMTS), 2002, pp. 211–215.

    Google Scholar 

  106. Koch, M., Evans, A.G.R., and Brunnschweiler, A., Simulation and Fabrication of Micromachined Cantilever Valves, Sensors and Actuators A, 1997, pp. 756–759.

    Google Scholar 

  107. Emmer, A., Jansson, M., Roeraade, J., Lindberg, U., and Hök, B., Fabrication and Characterisation of a Silicon Microvalve, J. Microcolumn Separation, 1992, Vol. 4, No. 1, pp. 13–15.

    Article  CAS  Google Scholar 

  108. Zengerle, R., Richter, A., and Sandmaier, H., A Micro Membrane Pump with Electrostatic Actuation, Proc. IEEE Micro Electro Mechanical Systems, 1992, pp. 19–24.

    Google Scholar 

  109. Koch, M., Evans, A.G.R., and Brunnschweiler, A., Coupled FEM Simulation for the Characterization of the Fluid Flow within a Micromachined Cantilever Valve, J. Micromech. Microeng., 1996;6:112–114.

    Article  Google Scholar 

  110. Tabata, O., Kawahata, K., Sugiyama, S., and Igarashi, I., Mechanical Property Measurements of Thin Films Using Load Deflection of Composite Rectangular Membranes, Sensors Actuators, 1989;20:135–141.

    Article  Google Scholar 

  111. CRC Handbook of Chemistry & Physics, 76th Ed., CRC Press, 1995–1996.

    Google Scholar 

  112. Rapp, R., Schomburg, W.K., Maas, D., Schulz, J., and Stark, W., Liga Micropump for Gases and Liquids, Sensors and Actuators A, 1994;40:57.

    Article  CAS  Google Scholar 

  113. Tamanaha, C.R., Whitman, L.J., and Colton, R.J., Hybrid Macro-micro Fluidics System for a Chip-based Biosensor, J. Micromech. Microeng., 2002;12:7–17.

    Article  Google Scholar 

  114. Ohori, T., Shoji, S., Miura, K., and Yotsumoto, A., Partly Disposable Three-way Microvalve for a Medical Micro Total Analysis System (μTAS), Sensors and Actuators A, 1998;64:57–62.

    Article  Google Scholar 

  115. Elwenspoek, M., Lammerink, T.S.J., Miyake, R., and Fluitman, J.H.J., Towards Integrated Microliquid Handling Systems, J. Micromech. Microeng., 1994;4:227–245.

    Article  CAS  Google Scholar 

  116. Esashi, M., Integrated Micro Flow Control Systems, Sensors and Actuators A, 1990:161–167.

    Google Scholar 

  117. Zengerle, R., Ulrich, J., Kluge, S., Ritcher, M., and Ritcher, A., A Bidirectional Silicon Micropump, Sensors and Actuators A, 1995;50:81–86.

    Article  Google Scholar 

  118. Zhan, C., Lo, T., Liu, L., and Tsien, P., Silicon Membrane Micropump with Integrated Bimetallic Actuator, Chinese J. of Electronics, 1996;5(2).

    Google Scholar 

  119. Linnemann, R., Woias, P., Senfft, C.D., and Ditterich, J.A., Self-Priming and Bubble Tolerant Piezoelectric Silicon Micropump for Liquids and Gases, Proc. of the IEEE Microelectromechanical Systems (MEMS), 1998, pp. 532–537.

    Google Scholar 

  120. Koch, M., Harris, N., Evans, A., White, N., and Brunnschweiler, A., A Novel Micromachined Pump Based on Thick-Film Piezoelectric Actuation, Sensors and Actuators A, 1998;70:98–103.

    Article  Google Scholar 

  121. Xu, D., Wang, L., Ding, G., Zhou, Y., Yu, A., Cheng, X., Jian, C., and Cai, B., Dynamic Actuation Behaviour of NiTi/Si Diaphragm Micropump, Proc. of SPIE, 2000, Vol. 4174, pp. 324–330.

    Article  Google Scholar 

  122. Yang, Y., Zhou, Z., Ye, X., and Jiang, X., A Bimetallic Thermally Actuated Micropump, Microelectromechanical Systems (MEMS)—ASME, 1996:351–354.

    Google Scholar 

  123. Acero, M.C., Plaza, J.A., Esteve, J., Carmona, M., Marco, S., and Samitier, J., Design of a Modular Micropump Based on Anodic Bonding, J. Micromech. Microeng., 1997;7:179–182.

    Article  CAS  Google Scholar 

  124. Bernard, W.L., Khan, H., Heuer, A.H., and Huff, M.A., Thin Film Shape-Memory Alloy Actuated Micropumps, J. Microelectromechanical Systems, 1998;7(2):245–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bien, D.C.S., Mitchell, N.S.J., Gamble, H.S. (2006). Micro-machined Passive Valves: Fabrication Techniques, Characterisation and their Application. In: Leondes, C.T. (eds) MEMS/NEMS. Springer, Boston, MA. https://doi.org/10.1007/0-387-25786-1_19

Download citation

Publish with us

Policies and ethics