Skip to main content

MEMS/NEMS Techniques and Applications

Techniques and Applications of Capacitive Micromachined Ultrasonic Transducers

  • Chapter
MEMS/NEMS

Abstract

Ultrasound is an imaging tool with a broad range of applications such as medical diagnostics, underwater exploration and nondestructive evaluation of materials. As early as the first half of the 19th century, sound waves had been used for underwater navigation and ranging. However, the history of modern acoustics began with the establishment of the theory of sound by Lord Rayleigh, and the discovery of piezoelectric effect by the Curie brothers, both in the late 1800s. Acoustical devices have been used for practical underwater imaging applications since World War I. Use of ultrasound in medicine started in the 1930s, and initially was confined to therapy, particularly in tissue heating. The first use of ultrasound as a medical diagnostic tool was for transmission imaging of brain tumors in the early 1940s. In the following years, sonic energy reflection from within soft tissue histological elements was reported, pioneering pulse-echo ultrasound imaging. Linear transducer arrays with electronic scanning started replacing fixed-focus mechanical sector scanners in the 1970s, providing greatly improved resolution and faster image formation. The details of the history of ultrasound imaging and transducer technologies can be found in several books [1, 2] and papers [3]–[6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Hunt, F.V., Origins of Acoustics, New Haven, CT: Yale University Press, 1978.

    Google Scholar 

  2. Hunt, F.V., Electroacoustics; the Analysis of Transduction, and its Historical Background, Cambridge, Harvard University Press, 2nd (ed.), 1982.

    Google Scholar 

  3. Erikson, K.R., Fry, F.J., and Jones, J.P., Ultrasound in Medicine-A Review, IEEE Trans. Sonics Ultrason., 1974;21:144–170.

    Google Scholar 

  4. Mason, W.P., Sonics and Ultrasonics: Early History and Applications, IEEE Trans. Sonics Ultrason., 1976;23:224–232.

    Google Scholar 

  5. O’Brien Jr., W.D., Assessing the Risks for Modern Diagnostic Ultrasound Imaging, Jpn. J. Appl. Phys., 1998;37:2781–2788.

    Article  CAS  Google Scholar 

  6. Smith, W.A., The Role of Piezocomposites in Ultrasonic Transducers, in Proc. IEEE Ultrason. Symp. IEEE, 1989, pp. 755–766.

    Google Scholar 

  7. Kuhl, W., Schodder, G.R., and Schodder, F.K., Condenser Transmitters and Microphnes with Solid Dielectric for Airborne Ultrasonics, Acustica, 1954;4:520–532.

    Google Scholar 

  8. Cantrell, J.H. and Heyman, J.S., Broadband Electrostatic Acoustic Transducer for Ultrasonic Measurements in Liquid, Rev. Sci. Instrum., 1979;50:31–33.

    Article  CAS  Google Scholar 

  9. Hohm, D. and Hess, G., A Subminiature Condenser Microphone with Silicon-nitride Membrane and Silicon Backplate, J. Acoust. Soc. Amer., 1989;85:476–480.

    Article  Google Scholar 

  10. Suzuki, K., Higuchi, K., and Tanigawa, H., A Silicon Electrostatic Ultrasonic Transducer, IEEE Transactionson Ultrasonics, Ferroelectrics, and Frequency Control, 1989;36(6):620–627.

    Article  CAS  Google Scholar 

  11. Rafiq, M. and Wykes, C., The Performance of Capacitive Ultrasonic Transducers Using v-grooved Backplates, Meas. Sci. Technol., 1991;2:168–174.

    Article  Google Scholar 

  12. Haller, M.I. and Khuri-Yakub, B.T., A Surface Micromachined Electrostatic Ultrasonic Air Transducer, in Ultrasonics Symposium Proceedings IEEE, 1994, pp. 1241–1244.

    Google Scholar 

  13. Hutchins, D.A. and Schindel, D.W., Advances in Non-contact and Air-coupled Transducers, in Ultrasonics Symposium Proceedings IEEE, 1994, pp. 1245–1254.

    Google Scholar 

  14. Eccardt, P., Niederer, K., Scheiter, T., and Hierold, C., Surface Micromachined Ultrasound Transducers in cmos Technology, in Ultrasaonics Symposium Proceedings IEEE, 1996, pp. 959–962.

    Google Scholar 

  15. Eccardt, P.C., Niederer, K., and Fischer, B., Micromachined Transducers for Ultrasound Applications, in Ultrasonic Symposium Proceedings, IEEE, 1997, pp. 1609–1618.

    Google Scholar 

  16. Khuri-Yakub, B.T., Cheng, C.-H., Degertekin, F.L., Sanli Ergun, A., Hansen, S., Jin, X.-C., and Oralkan, O., Silicon Micromachined Ultrasonic Transducers, Jpn. J. Appl. Phys., 2000;39:2883–2887.

    Article  CAS  Google Scholar 

  17. Smith, S.W., Pavy, Jr., H.G., and von Ramm, O.T., High-speed Ultrasound Volumetric Imaging System— Part I: Transducer Design and Beam Steering, IEEE Trans. Ultrason., Ferroelect., Freq. Cont., 1991;38:100–108.

    Article  CAS  Google Scholar 

  18. von Ramm, O.T., Smith, S.W., and Pavy, Jr., H.G., High-speed Ultrasound Volumetric Imaging System—Part II: Parallel Processing and Image Display, IEEE Trans. Ultrason., Ferroelect., Freq. Cont., 1991;38:109–115.

    Article  Google Scholar 

  19. Turnbull, D.H. and Foster, F.S., Beam Steering with Pulsed Two-dimensional Transducer Arrays, IEEE Trans. Ultrason., Ferroelect., Freq. Cont., 1991;38:320–333.

    Article  CAS  Google Scholar 

  20. Ching H. Cheng, Eugene M. Chow, Xuecheng Jin, A. Sanli Ergun, and Butrus T. Khuri-Yakub, An Efficient Electrical Addressing Method Using Through-wafer vias for Two-dimensional Ultrasonic Arrays, in Ultrasonic Symposium Proceedings IEEE, 2000, pp. 1179–1182.

    Google Scholar 

  21. Kuhmann, J.F., Heschel, M., Bouwstra, S., Baleras, F., and Massit, C., Through Wafer Interconnects and Flipchip Bonding: A Toolbox for Advanced Hybrid Technologies for Mems, in Proceedings EUROSENSORS XIII 13th European Conf. on Solid-State Transducers, 1999, pp. 265–272.

    Google Scholar 

  22. Wygant, I.O., Zhuang, X., Yeh, D.T., Nikoozadeh, A., Oralkan, O., Ergun, A.S., Karaman, M., and Khuri-Yakub, B.T., Integrated Ultrasonic Imaging Systems Based on Cmut Arrays: Recent Progress, Presented at the IEEE Intl. Ultrason. Symp., Montreal, Canada. IEEE, 2004.

    Google Scholar 

  23. Averkiou, M.A., Roundhill, D.N., and Powers, J.E., A New Imaging Technique Based on the Nonlinear Properties of Tissues, in Proc. IEEE Ultrason. Symp. IEEE, 1997;1561–1566.

    Google Scholar 

  24. Hossack, J.A., Mauchamp, P., and Ratsimandresy, L., A High Bandwidth Transducer Optimized for Harmonic Imaging, in Proc. IEEE Ultrason. Symp. IEEE, 2000;1021–1024.

    Google Scholar 

  25. Jagannathan, H., Yaralioglu, G.G., Ergun, A.S., Degertekin, F.L., and Khuri-Yakub, B.T., Microfluidic Channels with Integrated Ultrasonic Transducers, in Proc. IEEE Ultrason. Symp. IEEE, 2001;859–862.

    Google Scholar 

  26. Oralkan, O., Hansen, S.T., Bayram, B., Yaralioglu, G.G., Ergun, A.S., and Khuri-Yakub, B.T., High Frequency cmut Arrays for High-resolution Medical Imaging, presented at the IEEE Intl. Ultrason. Symp., Montreal, Canada. IEEE, 2004.

    Google Scholar 

  27. Utkan Demirci, Arif S. Ergun, Omer Oralkan, and Mustafa Karaman, Forward-Viewing CMUT Arrays for Medical Imaging, IEEE Trans. on Ultrasonics Ferrolectrics Butrus T. Khuri-Yakub, July 2004;51(7):886–894.

    Article  Google Scholar 

  28. Oralkan, O., Hansen, S.T., Bayram, B., Yaralioglu, G.G., Ergun, A.S., and Khuri-Yakub, B.T., Cmut Ring Arrays for Forward-looking Intravascular Imaging, in presented at the IEEE Intl. Ultrason. Symp. Montreal, Canada. IEEE, 2004.

    Google Scholar 

  29. Lizzi, F.L., Ostromogilsky, M., Feleppa, E.J., Rorke, M.C., and Yaremko, M.M., Relationship of Ultrasonic Spectral Parameters to Features of Tissue Microstructure, IEEE Trans. Ultrason., Ferroelect., Freq. Cont., 1986;33:319–329.

    Google Scholar 

  30. Cincotti, G., Loi, G., and Pappalardo, M., Frequency Decomposition and Compounding of Ultrasound Medical Images with Wavelet Packets, IEEE Trans. Med. Imaging, 2001;20:764–771.

    Article  CAS  Google Scholar 

  31. Sean Hansen, Neville Irani, F. Levent Degertekin, Igal Ladabaum, and B.T. Khuri-Yakub, Defect Imaging by Micromachined Ultrasonic Air Transducers, in Ultrasonic Symposium Proceedings IEEE, 1998, pp. 1003–1006.

    Google Scholar 

  32. Sean T. Hansen, Arif S. Ergun, William Liou, Bertram A. Auld, and Butrus T. Khuri-Yakub, Wideband Micromachined Capacitive Microphones with Radio Frequency Detection, Journal of the Acoustical Society of America, August 2004;116:828–842.

    Article  Google Scholar 

  33. Hall, N.A., Wook, L., and Degertekin, F.L., Capacitive Micromachined Ultrasonic Transducers with Diffraction-based Integrated Optical Displacement Detection, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2003;50(11):1570.

    Article  Google Scholar 

  34. Wook, L., Hall, N.A., Zhiping, Z., and Degertekin, F.L., Fabrication and Characterization of a Micromachined Acoustic Sensor with Integrated Optical Readout, IEEE Journal of Selected Topics in Quantum Electronics, 2004;10(3):643.

    Article  CAS  Google Scholar 

  35. Yaralioglu, G.G., Badi, M.H., Ergun, A.S., Cheng, C.H., Khuri-Yakub, B.T., and Degertekin, F.L., Lamb Wave Devices Using Capacitive Micromachined Ultrasonic Transducers, Applied Physics Letters, 2001;78(1):111.

    Article  CAS  Google Scholar 

  36. Badi, M.H., Yaralioglu, G.G., Ergun, A.S., Hansen, S.T., Wong, E.J., and Khuri-Yakub, B.T., Capacitive Micromachined Ultrasonic Lambwave Transducers Using Rectangular Membranes, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Sep. 2003;50(9):1191–1203.

    Article  Google Scholar 

  37. Yaralioglu, G.G., Wygant, I.O., Marentis, T.C., and Khuri-Yakub, B.T., Ultrasonic Mixing in Microuidic Channels Using Integrated Transducers, Anal. Chem., 2004;76(13):3694.

    Article  CAS  Google Scholar 

  38. Xue-Cheng Jin, Igal Ladabaum, and Butrus T. Khuri-Yakub, The Microfabrication of Capacitive Ultrasonic Transducers, Journal of Microelectromechanical Systems, 1998;7:295–302.

    Article  CAS  Google Scholar 

  39. Xue-Cheng Jin, Igal Ladabaum, F. Levent Degertekin, Sam Calmes, and Butrus T. Khuri-Yakub, Fabrication and Characterization of Surface Micromachined Capacitive Ultrasonic Immersion Transducers, Journal of Microelectromechanical Systems, 1999;8:100–114.

    Article  Google Scholar 

  40. Yongli Huang, A. Sanli Ergun, Edward H⇌estrom, Mohammed H. Badi, and Butrus T. Khuri-Yakub, Fabricating Capacitive Micromachined Ultrasonic Transducers with Wafer-bonding Technology, Journal of Microelectromechanical Systems, April 2003;12(2):128–137.

    Article  CAS  Google Scholar 

  41. Mason, W., Electromechanical Transducers and Wave Filters, Van Nostrand, New York, 1948.

    Google Scholar 

  42. Igal Ladabaum, Xue-Cheng Jin, Hyongsok T. Soh, Abdullah Atalar, and Butrus T. Khuri-Yakub, Surface Micromachined Capacitive Ultrasonic Transducers, IEEE Trans. on Ultrasonics, Ferrolectrics and Frequency Control, 1998;45:678–690.

    Article  CAS  Google Scholar 

  43. Omer Oralkan, Xue-Cheng Jin, F. Levent Degertekin, and Butrus T. Khuri-Yakub, Simulation and Experimental Characterization of a 2-d Capacitive Micromachined Ultrasonic Transducer Array Element, IEEE Trans. on Ultrasonics, Ferrolectrics and Frequency Control, 1999;46:1337–1340.

    Article  CAS  Google Scholar 

  44. Lohfink, A., Eccardt, P.C., Benecke, W., and Meixner, H., Derivation of a 1-D cmut Model from Fem Results for Linear and Nonlinear Equivalent Circuit Simulation, in Ultrasonic Symposium Proceedings IEEE, 2003, pp. 465–468.

    Google Scholar 

  45. Goksen G. Yaralioglu, Arif Sanli Ergun, Baris Bayram, Edward Hægstrom, and Butrus T. Khuri-Yakub, Calculation and Measurement of Electromechanical Coupling Coe_cient of Capacitive Micromachined Ultrasonic Transducers, IEEE Trans. on Ultrasonics, Ferrolectrics and Frequency Control, April 2003;50(4):449–456.

    Article  Google Scholar 

  46. Xuecheng Jin, Omer Oralkan, F. Levent Degertekin, and Butrus T. Khuri-Yakub, Characterization of One-dimensional Capacitive Micromachined Ultrasonic Immersion Transducer Arrays, IEEE Trans. on Ultrasonics, Ferrolectrics and Frequency Control, May 2001;48(3):750–760.

    Article  CAS  Google Scholar 

  47. Ayhan Bozkurt F. Levent De≈gertekin, Atalar, A., and Khuri-Yakub, B.T. Analytic Modeling of Loss and Cross-coupling in Capacitive Micromachined Ultrasonic Transducers, in Ultrasonic Symposium Proceedings IEEE, 1998, pp. 1025–1028.

    Google Scholar 

  48. Wojcik, G., Mould, J., Reynolds, P., Fitzgerald, A., Wagner, P., and Ladabaum, I., Time-domain Models of Mut Array Cross-talk in Silicon Substrates, in Ultrasonics Symposium Proceedings IEEE, 2000, pp. 909–914.

    Google Scholar 

  49. Bayram, B., Yaralioglu, G.G., Ergun, A.S., and Khuri-Yakub, B.T., Influence of the Electrode Size and Location on the Performance of a cmut, in Ultrasonics Symposium Proceedings IEEE, 2001, pp. 949–952.

    Google Scholar 

  50. Roh, Y. and Khuri-Yakub, B.T., Finite Element Analysis of Underwater Capacitor Micromachined Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2002;49:293–298.

    Article  Google Scholar 

  51. Baris Bayram, Edward Hægstrom, Goksen G. Yaralioglu, and Butrus T. Khuri-Yakub, A New Regime for Operating Capacitive Micromachined Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferrolectrics and Frequency Control, Sep. 2003;50(9):1184–1190.

    Article  Google Scholar 

  52. Bayram, B., Oralkan, O., Ergun, A.S., Hægstrom, E., Yaralioglu, G.G., and Khuri-Yakub, B.T., Capacitive Micromachined Ultrasonic Transducer Design for High Power Transission, to be published in IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

    Google Scholar 

  53. Jin, X.C., Degertekin, F.L., Calmes, S., Zhang, X.J., Ladabaum, I., and Khuri-Yakub, B.T., Micromachined Capacitive Transducer Arrays for Medical Ultrasound Imaging, in Proc. IEEE Ultrason. Symp. IEEE, 1998, pp. 1877–1880.

    Google Scholar 

  54. Oralkan, O., Jin, X.C., Kaviani, K., Ergun, A.S., Degertekin, F.L., Karaman, M., and Khuri-Yakub, B.T., Initial Pulse-echo Imaging Results with One-dimensional Capacitive Micromachined Ultrasonic Transducer Arrays, in Ultrasonic Symposium Proceedings IEEE, 2000, pp. 959–962.

    Google Scholar 

  55. Omer Oralkan, A. Sanli Ergun, Jeremy A. Johnson, Mustafa Karaman, Utkan Demirci, Kambiz Kaviani, Thomas H. Lee, and Butrus T. Khuri-Yakub, Capacitive Micromachined Ultrasonic Immersion Transducers: Next-generation Arrays for Acoustic Imaging?, IEEE Transactions on Ultrasonics, Ferrolectrics and Frequency Control, November 2002;49(11):1596–1610.

    Article  Google Scholar 

  56. Omer Oralkan, A. Sanli Ergun, Ching-Hsiang Cheng, Jeremy A. Johnson, Mustafa Karaman, Thomas H. Lee, and Butrus T. Khuri-Yakub, Volumetric Ultrasound Imaging Using 2-d cmut Arrays, IEEE Transactions on Ultrasonics, Ferrolectrics and Frequency Control, November 2003;50(11):1581–1594.

    Article  Google Scholar 

  57. Mills, D.M. and Smith, S.W., Real-time in-vivo Imaging with Capacitive Micromachined Ultrasound Transducer (cmut) Linear Arrays, in Ultrasonic Symposium Proceedings IEEE, 2003, pp. 568–571.

    Google Scholar 

  58. Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells, McGraw-Hill book company, Inc., 2nd ed. 1959.

    Google Scholar 

  59. Hunt, F.V., Electroacoustics; the Analysis of Transduction, and its Historical Background, Cambridge, Harvard University Press, 1954.

    Google Scholar 

  60. Fraser, J. and Reynolds, P., Finite-element Method for Determination of Electromechanical Coupling Coefficient for Piezoelectric and Capacitive Micromachined Ultrasonic Transducers, in Joint 140th meeting of ASA/NOISE-CON. AIP, 2000.

    Google Scholar 

  61. Berlincourt, D., Piezoelectric Crystals and Ceramics, Plenum Press, New York-London, 1971.

    Google Scholar 

  62. Ayhan Bozkurt, Igal Ladabaum, Abdullah Atalar, and Butrus T. Khuri-Yakub, Theory and Analysis of Electrode Size Optimization for Capacitive Microfabricated Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferrolectrics and Frequency Control, 1999;46:1364–1374.

    Article  CAS  Google Scholar 

  63. Goksen G. Yaralioglu, Mohammed H. Badi, Arif S. Ergun, and Khuri-Yakub, B.T., Improved Equivalen Circuit and Finite Element Method Modeling of Capacitive Micromachined Ultrasonic Transducers, in Ultrasonic Symposium Proceedings IEEE, 2003, pp. 469–472.

    Google Scholar 

  64. Kaltenbacher, M., Landes, H., Niederer, K., and Lerch, R., 3-D Simulation of Controlled Micromachined Capacitive Ultrasound Transducers, in Ultrasonics Symposium Proceedings IEEE, 1999, pp. 1155–1158.

    Google Scholar 

  65. Ballandras, S., Caronti, A., Steichen, W., Wilm, M., Laude, V., Pastureaud, T., Lardat, R., and Daniau, W., Simulation of cmut Radiating in Water Using a Mixed nite Element/Boundary Element Approach, in Ultrasonics Symposium Proceedings IEEE, 2002, pp. 1048–1051.

    Google Scholar 

  66. Seidel, H., Csepregi, L., Heuberger, A., and Baumgartel, H., Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, Journal of Electrochemical Society, 1990;13(11):3612–3625.

    Article  Google Scholar 

  67. Joshua G. Knight and F. Levent Degertekin, Fabrication and Characterization of cmuts for Forward Looking Intravascular Ultrasound Imaging, in Ultrasonic Symposium Proceedings IEEE, 2003, pp. 1175–1178.

    Google Scholar 

  68. Howe, R.T. and Muller, R.S., Stress in Polycrystalline and Amorphous Silicon Thin Films, Journal of Applied Physics, 1983;54(8):4674–4675.

    Article  CAS  Google Scholar 

  69. Orpana, M. and Korhonen, A.O., Control of Residual Stress of Polysilicon Films by Heavy Doping in Surface Micromachining, in Proceedings of Transducers. IEEE, 1991, pp. 957–960.

    Google Scholar 

  70. Altti Torkkeli, Outi Rusanen, Jaakko Saarilahti, Heikki Seppa, Hannu Sipola, and Jarmmo Hietanen, Capacitive Microphone with Low-stress Polysilicon Membrane and High-stress Polysilicon Backplate, Sensors and Actuators A, 2000;85:116–123.

    Article  Google Scholar 

  71. Ahrens, O., Buhrdorf, A., Hohlfeld, D., Tebje, L., and Binder, J., Fabrication of Gap-optimized cmut, IEEE Transactions on Ultrasonics, Ferrolectrics and Frequency Control, Sep. 2002;49(9):1321–1329.

    Article  Google Scholar 

  72. Mathew I. Haller and Butrus T. Khuri-Yakub, A Surface Micromachined Electrostatic Ultrasonic Air Transducer, IEEE Transactions on Ultrasonics, Ferrolectrics and Frequency Control, Jan. 1996;45(1):1–6.

    Article  Google Scholar 

  73. Caliano, G., Galanello, F., Caronti, A., Carotenuto, R., Pappalardo, M., Foglietti, V., and Lamberti, N., Micromachined Ultrasonic Transducers Using Silicon Nitride Membrane Fabricated in pecvd Technology, in Ultrasonics Symposium Proceedings IEEE, 2000.

    Google Scholar 

  74. Russell A. Noble, Anthony D. R. Jones, Toby J. Robertson, David A. Hutchins, and Duncan R. Billson, Wide Bandwidth, Micromachined Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferrolectrics and Frequency Control, Nov. 2001;48(6):1495–1507.

    Article  CAS  Google Scholar 

  75. Memmi, D., Foglietti, V., Cianci, E., Caliano, G., and Pappalardo, M., Fabrication of Capacitive Micromechanical Ultrasonic Transducers by Low-temperature Process, Sensors and Actuators A, 2002;99:85–91.

    Article  Google Scholar 

  76. Knight, J., McLean, J., and Degertekin, F.L., Low Temperature Fabrication of Immersion Capacitive Micromachined Ultrasonic Transducers on Silicon and Dielectric Substrates, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2004;51(10):1324.

    Article  Google Scholar 

  77. Mastrangelo, C.H. and Hsu, C.H., Mechanical Stability and Adhesion of Microstructures Under Capillary Forces-part I: Basic Theory, Journal of Microelectromechanical Systems, March 1993:2(1):33–43.

    Article  CAS  Google Scholar 

  78. Mastrangelo, C.H. and Hsu, C.H., Mechanical Stability and Adhesion of Microstructures Under Capillary Forces-part II: Experiments, Journal of Microelectromechanical Systems, March 1993;2(1):44–55.

    Article  CAS  Google Scholar 

  79. Niels Tas, Tonny Sonnenberg, Henri Jansen, Rob Legtenberg, and Miko Elwenspoek, Stiction in Surface Micromachining, Journal of Micromechanics and Microengineering, 1996;6:385–397.

    Article  CAS  Google Scholar 

  80. Guckel, H., Sniegowski, J.J., Christenson, T.R., Mohney, S., and Kelly, T.F., Fabrication of Micromechanical Devices from Polysilicon Films with Smooth Surfaces, Sensors and Actuators, 1989;20:117–122.

    Article  CAS  Google Scholar 

  81. Mulhern, G.T., Soane, D.S., and Howe, R.T., Supercritical Carbon Dioxide Drying of Microstructures, in Proceedings of the 7th International Conference on Solid-State Sensors and Actuators, 1993, pp. 296–299.

    Google Scholar 

  82. Jong Hyun Lee, Hoi Hwan Chung, Seung Youl Kang, Jong Tae Baek, and Hyung Joun Yoo, Fabrication of Surface Micromachined Polysilicon Actuators Using Dry Release Process of hf Gas-phase Etching, in Electron Devices Meeting, 1996, pp. 761–764.

    Google Scholar 

  83. Hirano, T., Furuhata, T., and Fujita, H., Dry Releasing of Electroplated Rotational and Overhanging Structures, in Proceedings of MEMS’ 93. IEEE, 1993, pp. 278–283.

    Google Scholar 

  84. Fritschi, R., Dehollain, C., Declercq, M.J., Ionescu, A.M., Hibert, C., Fluckiger, P., and Renaud, P., A Novel rf mems Technological Platform, in Industrial Electronics Society, IEEE 2002 28th Annual Conference of the IEEE, 2002, pp. 3052–3056.

    Google Scholar 

  85. Ahrens, O., Hohlfeld, D., Buhrdorf, A., Glitza, O., and Binder, J., A New Class of Capacitive Micromachined Ultrasonic Transducers, in Ultrasonics Symposium Proceedings IEEE, 2000, pp. 939–942.

    Google Scholar 

  86. Goksen G. Yaralioglu, Arif S. Ergun, Baris Bayram, and Theodore Marentis B.T. Khuri-Yakub, Residual Stress and Young’s Modulus Measurement of Capacitive Micromachined Ultrasonic Transducer Membranes, in Ultrasonic Symposium Proceedings IEEE, 2001, pp. 953–956.

    Google Scholar 

  87. Ladabaum, I., Khuri-Yakub, B.T., and Spoliansky, D., Micromachined Ultrasonic Transducers: 11.4 mhz Transmission in Air and More, Applied Physics Letters, 1996;68:7–9.

    Article  CAS  Google Scholar 

  88. Soh, H.T., Ladabaum, I., Atalar, A., Quate, C.F., and Khuri-Yakub, B.T., Silicon Micromachined Ultrasonic Immersion Transducers, Applied Physics Letters, 1996;69:3674–3676.

    Article  CAS  Google Scholar 

  89. Xue-cheng Jin, Micromachined Capacitive Ultrasonic Immersion Transducer Array, Ph.D. thesis, Stanford University, January 2002.

    Google Scholar 

  90. Noble, R.A., Davies, R.R., Day, M.M., Koker, L., King, D.O., Brunson, K.M., Jones, A.R.D., McIntosh, J.S., Hutchins, D.A., Robertson, T.J., and Saul, P., Cost-effective and Manufacturable Route to the Fabrication of High-density 2-D Micromachined Ultrasonic Transducer Arrays and (cmos) Signal Conditioning Electronics on the Same Silicon Substrate, in Ultrasonic Symposium Proceedings IEEE, 2001, pp. 941–944.

    Google Scholar 

  91. Noble, R.A., Davies, R.R., King, D.O., Day, M.M., Jones, A.R.D., McIntosh, J.S., Hutchins, D.A., and Saul, P., Low-temperature Micromachined cmuts with Fully-integrated Analogue Front-end Electronics, in Ultrasonic Symposium Proceedings IEEE, 2002, pp. 1045–1050.

    Google Scholar 

  92. Ching H. Cheng, Arif S. Ergun, and Butrus T. Khuri-Yakub, Electrical Through-wafer Interconnects with 0.05 Picofarads Parasitic Capacitance on 400 μm Thick Silicon Substrate, in Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, 2002, pp. 157–160.

    Google Scholar 

  93. Kurt Petersen, Joe Brown, Ted Vermuelen, Philip Barth, Joseph Mallon, Jr., and Janusz Bryzek, Ultrastable, High-temperature Pressure Sensors Using Silicon Fusion Bonding, Sensors and Actuators A, 1990;A21–A23:96–101.

    Article  Google Scholar 

  94. Philip W. Barth, Silicon Fusion Bonding for Fabrication of Sensors, Actuators and Microstructures, Sensors and Actuators A, 1990;A21–A23:919–926.

    Article  Google Scholar 

  95. Iyer, S.S. and Auberton Herv e, A.J. Eds., Silicon Wafer Bonding Technology for VLSI and MEMS Applications, INSPEC, The Institution of Electrical Engineers, London, 2002.

    Google Scholar 

  96. Yongli Huang, Edward Hægstrom, Xuefeng Zhuang, A. Sanl Ergun, and Butrus T. Khuri-Yakub, A Solution to the Charging Problems in Capacitive Micromachined Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferrolectrics and Frequency Control, accepted for publication.

    Google Scholar 

  97. Arif S. Ergun, Yongli Huang, Ching-Hsiang Cheng, Omer Oralkan, Jeremy Johnson, Hmenath Jagannathan, Utkan Demirci, Goksen G. Yarahoglu, Mustafa Karaman, and Khuri-Yakub, B.T., Broadband Capacitive Micromachined Ultrasonic Transducers Ranging from 10 khz to 60 mhz for Imaging Applications and More, in Ultrasonic Symposium Proceedings IEEE, 2002, pp. 1039–1043.

    Google Scholar 

  98. Yongli Huang, Edward H gstrom, Xuefeng Zhuang, A. Sanl Ergun, and Butrus T. Khuri-Yakub, Optimized Membrane Configuration Improves cmut Performance, in Ultrasonic Symposium Proceedings IEEE, 2004.

    Google Scholar 

  99. Chi, T., Heaton, M.G., and Mirza, A., Personal Communications, Innovative Micro Technologies (IMT), Santa Barbara, CA, Oct. 2004.

    Google Scholar 

  100. Martin Abreu, J.M., Calderon, L., Cerez, R., and Perez, L.A., Shaping the Detection Lobe of Ultrasonic Ranging Devices., Meas. Sci. Technol., 1997;8:1279–1284.

    Article  Google Scholar 

  101. Wehn, H.W. and Belanger, P.R., Ultrasound-based Robot Position Estimation, IEEE Transactions on Robotics and Automation, 1997;13(5):682–692.

    Article  Google Scholar 

  102. Batarseh, D.T., Burcham, T.N., and McFadyen, G.M., An Ultrasonic Ranging System for the Blind, in Biomedical Engineering Conference IEEE, 1997, pp. 411–413.

    Google Scholar 

  103. Brown, M.K., Feature Extraction Techniques for Recognizing Solid Objects with an Ultrasonic Range Sensor, IEEE Transactions on Robotics and Automation, 1985;1(4):191–205.

    Article  CAS  Google Scholar 

  104. Brown, M.K., An Ultrasonic Ranging System for Structural Vibration Measurements, IEEE Transactions on Instrumentation and Measurement, 1991;40(4):764–769.

    Article  Google Scholar 

  105. Borenstein, J. and Koren, Y., Obstacle Avoidance with Ultrasonic Sensors, IEEE Transactions on Robotics and Automation, 1988;4(2):213–218.

    Article  Google Scholar 

  106. Folkestad, T. and Mylvaganam, K.S., Chirp Excitation of Ultrasonic Probes and Algorithm for Filtering Transit Times in High-rangeability Gas ow Metering, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1993;40(3):193–215.

    Article  CAS  Google Scholar 

  107. Ergun, A.S., Yaralioglu, G.G., and Khuri-Yakub, B.T., Capacitive Micromachined Ultrasonic Transducers: Theory and Technology, Journal of Aerospace Engineering, 2003;16:76–84.

    Article  Google Scholar 

  108. Hansen, S., Degertekin, F.L., and Khuri-Yakub, B.T., Air-coupled Non-destructive Evaluation Using Micromachined Ultrasonic Transducers, in Ultrasonic Symposium Proceedings IEEE, 1999, pp. 1037–1040.

    Google Scholar 

  109. Nygaard, G., Mylvaganam, S., and Engan, H.E., Integration of Impedance Measurements with Transit Time Measurements for Ultrasonic Gas Mass Flow Metering-model and Experiments with Transducers in Different Vibration Modes, in Ultrasonics Symposium Proceedings IEEE, 2000, pp. 475–482.

    Google Scholar 

  110. Karaman, M., Li, P.-C., and O’Donnell, M., Synthetic Aperture Imaging for Small Scale Systems, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1995;42:429–442.

    Article  Google Scholar 

  111. Thomenius, K.E., Evolution of Ultrasound Beamformers, in Ultrasonics Symposium Proceedings IEEE, 1996, pp. 1615–1622.

    Google Scholar 

  112. Oralkan, O., Bayram, B., Yaralioglu, G.G., Ergun, A.S., and Khuri-Yakub, B.T., Collapse-Mode Operation of Capacitive Micromachined Ultrasonic Transducers Submitted for Publication in IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

    Google Scholar 

  113. Yaralioglu, G.G., Badi, M.H., Ergun, A.S., Cheng, C.H., Khuri-Yakub, B.T., and Degertekin, F.L., Lamb Wave Devices Using Capacitive Micromachined Ultrasonic Transducers, Applied Physics Letters, 2001;78:111–113.

    Article  CAS  Google Scholar 

  114. McLean, J. and Degertekin, F.L., Directional Scholte Wave Generation and Detection Using Interdigital Capacitive Micromachined Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, June 2004;51(6):756–764.

    Article  Google Scholar 

  115. Ergun, A.S., Atalar, A., Temelkuran, B., and Ozbay, E., A Sensitive Detection Method for Capacitive Ultrasonic Transducers, Applied Physics Letters, 1998;72:2957–2959.

    Article  CAS  Google Scholar 

  116. Ergun, A.S., Temelkuran, B., Ozbay, E., and Atalar, A., A New Detection Method for Capacitive Micromachined Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2001;48(4):932–942.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ergun, A.S., Yaralioglu, G.G., Oralkan, O., Khuri-Yakub, B.T. (2006). MEMS/NEMS Techniques and Applications. In: Leondes, C.T. (eds) MEMS/NEMS. Springer, Boston, MA. https://doi.org/10.1007/0-387-25786-1_16

Download citation

Publish with us

Policies and ethics