Skip to main content
Book cover

MEMS/NEMS pp 353–382Cite as

Fabrication Techniques in Micromachined Capacitive Ultrasonic Transducers and their Applications

  • Chapter

Abstract

Piezoelectric crystals, ceramics, polymers, and piezocomposite materials have long dominated the ultrasonic transducer technology, especially in medical ultrasound imaging. In recent years, thanks to the advances in microfabrication techniques, the technology of capacitive Micromachined Ultrasonic Transducers (CMUTs) has emerged as a competitive technology in the field of medical imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Averkiou, M.A., Roundhill, D.N., and Powers, J.E., A New Imaging Technique Based on the Nonlinear Properties of Tissues, in IEEE Proc. Ultrason. Symp., 1997, pp. 1561–1566.

    Google Scholar 

  2. Brinkley, J.F., McCallum, W.D., Muramatsu, S.K., and Liu, D.Y., Fetal Weight Wstimation from Lengths and Volumes Found by Three-Dimensional Ultrasonic Measurements. J. Ultrasound Med., 1984;3:163–168.

    CAS  Google Scholar 

  3. Bom, N., Lancee, C.T., Honkoop, J., and Hugenholtz, P.G., Ultrasonic Viewer for Cross-Sectional Analysis of Moving Cardiac Structures, Bio-medical Engineering, 1971;6:500–508.

    CAS  Google Scholar 

  4. Calmes, S., Cheng, C.H., Degertekin, F., Jin, X., Ergun, S., and Khuri-Yakub, B.T., Highly Integrated 2-D Capacitive Micromachined Ultrasonic Transducers, IEEE Proc. Ultrason. Symp., 1999, pp. 1163–1166.

    Google Scholar 

  5. Caliano, G., Foglietti, V., Cianci, E., and Pappalardo, M., A Silicon Microfabricated Electrostatic Transducer: 1 MHz Transmission in Air and in Water, Microelectronic Engineering, 2000;53:573–576.

    Article  CAS  Google Scholar 

  6. Caliano, G., Carotenuto, R., Caronti, A., Pappalardo, M., Foglietti, V., Cianci, E., Visigalli, L., and Persi, I., CMUT Echographic Probes: Design and Fabrication Process, in IEEE Proc. Ultrason. Symp. Munich, Germany, 2002, pp. 1067–1070.

    Google Scholar 

  7. Caliano, G., Carotenuto, R., Cianci, E., Foglietti, V., Caronti, A., Iula, A., and Pappalardo, M., Design, Fabrication and Characterization of a Capacitive Micromachined Ultrasonic Probe for Medical Imaging, Accepted for Publication on IEEE Trans. Ultrason., Ferroelect., Freq. Contr.

    Google Scholar 

  8. Caronti, A., Iula, A., Caliano, G., and Pappalardo, M., An Accurate Model for Capacitive Micromachined Ultrasonic Transducers, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 2002;49(2):159–168.

    Article  Google Scholar 

  9. Carr, H. and Wykes, C., Diagnostic Measurements in Capacitance Transducers, Ultrason., 1993;31(5):13–20.

    Article  Google Scholar 

  10. Cheng, C.H., Ergun, A.S., and Khuri-Yakub, B.T., Electrical Through-wafer Interconnects with Sub-picofarad Parasitic Capacitance, in Proc. MEMS 2001, 2001, pp. 18–21.

    Google Scholar 

  11. Cianci, E., Foglietti, V., Memmi, D., Caliano, G., Caronti, A., and Pappalardo, M., Fabrication of Capacitive Ultrasonic Transducers by a Low-temperature and Fully Surface-micromachined Process, Precision Engineering, 2002;26:347–354.

    Article  Google Scholar 

  12. Cianci, E., Visigalli, L., Foglietti, V., Caliano, G., and Pappalardo, M., Improvements Towards a Reliable Fabrication Process for CMUT, Microelectronic Engineering, 2003;67–68:602–608.

    Article  Google Scholar 

  13. Cianci, E., Minotti, A., Foglietti, V., Caliano, G., and Pappalardo, M., One-dimensional Capacitative Micromachined Ultrasonic Transducer Arrays for Echographic Probes, Microelectronic Engineering, 2004;73–74:502–507.

    Article  Google Scholar 

  14. Cittadine, A. and Nyström, J., MEMS—Finally Ready for Prime Time? Using Micro Sensors and a Newly Developed ASIC for Small-diameter Pipe Ultrasonic Metering, Flow Control magazine, 2001,Vol. VII, No. 11, November/December.

    Google Scholar 

  15. Dias, J.F., An Experimental Investigation of the Cross-coupling Between Elements of an Acoustic Imaging Array Transducer, Ultrasonic Imaging, 1982;4:44–55.

    Article  CAS  Google Scholar 

  16. Eccardt, P.C. and Niederer, K., Micromachined Ultrasound Transducers with Improved Coupling Factors from CMOS Compatible Process, Ultrasonics, 2000;38:774–780.

    Article  Google Scholar 

  17. Fenster, A. and Downey, D.B., 3-D Ultrasound Imaging: A Review, IEEE Engineering in Medicine and Biology, 1996;15:41–51.

    Article  Google Scholar 

  18. Goldstein, A. and Powis, R.L., Medical Ultrasonic Diagnostics in Ultrasonic Instruments and Devices I, in R.N. Thurston, A.D. Pierce, and E.P. Papadakis (Eds.), Madison, Wisconsin, 1999, p. 58.

    Google Scholar 

  19. Gururaya, T.R. and Panda, R.K., Current Status and Future Trends in Ultrasonic Transducer for Medical Imaging Applications, in Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics, ISAF 98, 1998, pp. 223–228.

    Google Scholar 

  20. Haller, M.I. and Khuri-Yakub, B.T., A Surface Micromachined Electrostatic Ultrasonic Air Transducer, in IEEE Proc. Ultrason. Symp., 1994, pp. 1241–1244.

    Google Scholar 

  21. Hansen, S.T., Mossawir, B.J, Ergun, A.S., Degertekin, F.L., and Khuri-Yakub, B.T., Air-coupled Nondestructive Evaluation Using Micromachined Ultrasonic Transducers, in IEEE Proc. Ultrason. Symp., 1999, pp. 1037–1040.

    Google Scholar 

  22. Hansen, S.T., Ergun, A.S., and Khuri-Yakub, B.T., Improved Modeling and Design of Microphones Using Radio Frequency Detection with Capacitive Micromachined Ultrasonic Transducers, in IEEE Proc. Ultrason. Symp., 2001, pp. 961–964.

    Google Scholar 

  23. Hayward, G. and Gachan, A., An Evaluation of 1–3 Connectivity Composite Transducers for Air-coupled Ultrasonic Applications, J. Acoust. Soc. Am., 1996;99:2148–2157.

    Article  Google Scholar 

  24. Huang, Y., Sanli Ergun, A., Hæggström, E., Badi, M.H., and Khuri-Yakub, B.T., Fabricating Capacitive Micromachined Ultrasonic Transducers with Wafer-bonding Technology, Journal of Microelectromech. Syst., 2003;12(2):128–137.

    Article  CAS  Google Scholar 

  25. Hunt, F.V., Electroacoustics. The Analysis of Transduction, and Its Historical Background, American Institute of Physics, Woodbury, New York, 1982.

    Google Scholar 

  26. Insana, M., Sound Attenuation in Tissue. Medical CT and Ultrasound: Current technology and applications, in L.W. Goldman and J.B. Fowlkes (Eds.), Advanced Medical Publishing, Madison, Wisconsin, 1995, pp. 15–33.

    Google Scholar 

  27. Jagannathan, H., Yaralioglu, G.G., Ergun, A.S., Degertekin, F.L., and Khuri-Yakub, B.T., Micro-fluidic Channels with Integrated Ultrasonic Transducers, in IEEE Proc. Ultrason. Symp., 2001, pp. 859–862.

    Google Scholar 

  28. Jagannathan, H., Yaralioglu, G.G., Ergun, A.S., and Khuri-Yakub, B.T., An Implementation of a Microfluidic Mixer and Switch Using Micromachined Acoustic Transducers, in IEEE Proc MEMS Kyoto 2003, 2003;104–107.

    Google Scholar 

  29. Jagannathan, H., Yaralioglu, G.G., Ergun, A.S., and Khuri-Yakub, B.T., Acoustic Heating and Thermometry in Microfluidic Channels, in IEEE Proc MEMS Kyoto 2003, 2003:474–477.

    Google Scholar 

  30. Jin, X., Ladabaum, I., and Khuri-Yakub B.T., The Microfabrication of Capacitive Ultrasonic Transducer, Journal of Microelectromech. Syst., 1998;7(3):295–302.

    Article  CAS  Google Scholar 

  31. Jin, X., Ladabaum, I., and Khuri-Yakub, B.T., Surface Micromachined Capacitive Ultrasonic Immersion Transducers, IEEE Proc. MEMS., 1998;649–654.

    Google Scholar 

  32. Jin, X., Degertekin, F., Calmes, S., Zhang, X.J., Ladabaum, I., and Khuri-Yakub, B.T., Micromachined Capacitative Transducer Arrays for Medical Ultrasound Imaging, IEEE Proc. Ultrason. Symp., 1998, pp. 1877–1880.

    Google Scholar 

  33. Jin, X., Ladabaum, I., Degertekin, F., Calmes, S., and Khuri-Yakub, B.T., Fabrication and Characterization of Surface Micromachined Capacitive Ultrasonic Immersion Transducer, Journal of Microelectromech. Syst., 1999;8(1):100–114.

    Article  Google Scholar 

  34. Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V., Fundamentals of Acoustics, 3rd ed. New York: John Wiley & Sons, 1982.

    Google Scholar 

  35. Kuhl, W., Schodder, G.R., and Schroder, F.K., Condenser Transmitters and Microphones with Solid Dielectric Diaphragms for Airborne Ultrasonics, Acustica, 1954;4:520–532.

    Google Scholar 

  36. Ladabaum, I., Jin, X., Soh, H.T., Pierre, F., Atalar, A., and Khuri-Yakub, B.T., Microfabricated Ultrasonic Transducers: Towards Robust Models and Immersion Devices, in IEEE Proc. Ultrason. Symp., 1996, pp. 337–340.

    Google Scholar 

  37. Ladabaum, I., Jin, X., Soh, H.T., Pierre, F., Atalar, A., and Khuri-Yakub, B.T., Surface Micromachined Capacitive Ultrasonic Transducers, IEEE Trans. Ultrason. Ferroelectric, Freq. Cont., 1998;45(3):678–690.

    Article  Google Scholar 

  38. Lee, Y.S. and Wise, K.D., A Batch-fabricated Silicon Pressure Capacitive Transducer with Low Temperature Sensitivity, IEEE Trans. Electron. Devices, 1982;29(1):42–48.

    Google Scholar 

  39. Lynnworth, L.C., Physical Acoustics, in P.M. Mason and R.N. Thurston, (eds.), New York: Academic Press, 1979.

    Google Scholar 

  40. Mason W.P., Electromechanical Transducers and Wave Filters, 2nd ed., New York: D.Van Nostrand Company, 1943.

    Google Scholar 

  41. Mastrangelo, C.H. and Hsu, C.H., Mechanical Stability and Adhesion of Microstructures Under Capillary Forces—Part I, Basic Theory, Journal of Microelectromech. Syst., 1993;2:33–43.

    Article  CAS  Google Scholar 

  42. Mastrangelo, C.H. and Hsu, C.H., Mechanical Stability and Adhesion of Microstructures Under Capillary Forces—Part II, Experiments, Journal of Microelectromech. Syst., 1993;2:44–55.

    Article  CAS  Google Scholar 

  43. Mattila, P., Tsuzuki, F., Vaataja, H., and Sasaki, K., Electroacoustic Model for Electrostatic Ultrasonic Transducers with V-grooved Backplates, IEEE Trans. Ultrason. Ferroelectric, Freq. Cont., 1995;42(1):1–7.

    Article  Google Scholar 

  44. Memmi, D., Foglietti, V., Cianci, E., Caliano, G., and Pappalardo M., Fabrication of Micromechanical Capacitive Ultrasonic Transducers by Low Temperature Process, Sensors and Actuators A, 2002;99:85–91.

    Article  Google Scholar 

  45. Mills, D.M. and Scott Smith, L., Real-time in-vivo Imaging with Capacitive Micromachined Ultrasound Transducer (CMUT) Linear Arrays, in IEEE Proc. Ultrasonic. Symp., 2003, pp. 568–571.

    Google Scholar 

  46. Noble, R.A., Jones, A.D.R., Robertson, T.J., Hutchins, D.A., and Billson, D.R., Novel, Wide Bandwidth, Micromachined Ultrasonic Transducers, IEEE Trans. Ultrason. Ferroelectric, Freq. Cont., 2001;48(6):1495–1507.

    Article  CAS  Google Scholar 

  47. Oralkan, O., Jin, X., Kaviani, K., Ergun, A.S., Degertekin, F. L., Karaman, M., and Khuri-Yakub, B.T., Initial Pulse-echo Imaging Results with One-dimensional Capacitive Micromachined Ultrasonic Transducer Arrays, in Proc. IEEE Ultrason. Symp., 2000, pp. 959–962.

    Google Scholar 

  48. Oralkan, O., Ergun, A.S., Cheng, C.H., Johnson, J.A., Karaman, M., Lee, T.H., and Khuri-Yakub B.T., Volumetric Imaging Using 2D Capacitive Micromachined Ultrasonic Transducer Arrays (CMUTs): Initial Results, in Proc. IEEE Ultrason. Symp., 2002, pp. 1056–1059.

    Google Scholar 

  49. Panda, S., Daft, C., Wagner, P., Ladabaum, I., Pellegretti, P., and Bertora, F., Microfabricated Ultrasonic Transducer (CMUT) Probes: Imaging Advantages over PZT Probes AIUM, Conference of the World Federation of Ultrasound in Medicine and Biology, June 2003.

    Google Scholar 

  50. Rafiq, M. and Wykes, C., The Performance of Capacitive Ultrasonic Transducers Using v-grooved Backplates, Measurement Sci. Technol., 1991;2:168–174.

    Article  Google Scholar 

  51. Riccabona, M., Nelson, T.R., Pretorius, D.H., and Davidson, T.E., Distance and Volume Measurement Using Three-dimensional Ultrasonography, J. Ultrasound Med., 1995;14:881–886.

    CAS  Google Scholar 

  52. Routh, H.F., Doppler Ultrasound-The Ability to Measure and Image Blood Flow, IEEE Engineering in Medicine and Biology, 1996;15:31–40.

    Article  Google Scholar 

  53. Scheeper, P., van der Donk, A. Olthius, W., and Bergveld, P., Fabrication of Silicon Condenser Microphones Using Silicon Wafer Technology, J. of Microelectromech. Syst., 1992;1:147–154.

    Article  CAS  Google Scholar 

  54. Schindel, D.W., Hutchins, D.A., Zou, L., and Sayer, M., The Design and Characterization of Micromachined Air-coupled Capacitance Transducers IEEE Trans. Ultrason. Ferroelectric, Freq. Cont., 1995;42(1): 42–50.

    Article  Google Scholar 

  55. Silverman, R.H., Rondeau, M.J., Lizzi, F.L., and Coleman, D.J. Three-dimensional High-frequency Ultrasonic Parameter Imaging of Anterior Segment Pathology, Ophthalmology, 1995;102:837–843.

    CAS  Google Scholar 

  56. Smith, S.W., Lee, W., Light, E.D., Yen, J.T., Wolf, P., and Idriss, S., Two Dimensional Arrays for 3-D Ultrasound Imaging, in Proc. IEEE Ultrason. Symp., 2002;1545–1553.

    Google Scholar 

  57. Smith, S.W., von Ramm, O.T., Haran, M.E., and Thurstone, F.L., Angular Response of Piezoelectric Elements in Phased Array Ultrasound Scanners, IEEE Trans. Sonics Ultrason., 1979;26(3):185–191.

    Google Scholar 

  58. Stoffel, A., Kovacs, A., Kronast, W., and Muller, B., LPCVD Against PECVD for Micromechanical Applications, J. Micromech. Microeng., 1996;6:1–13.

    Article  CAS  Google Scholar 

  59. Suzuki, K., Higuchi, K., and Tanigawa, H., A Silicon Electrostatic Ultrasonic Transducer, IEEE Trans. Ultrason. Ferroelectric, Freq. Cont., 1989;36(6):620–627.

    Article  Google Scholar 

  60. Thimoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells, McGraw-Hill, New York, 1959.

    Google Scholar 

  61. Thurstone, F.L. and von Ramm, O.T., A New Ultrasound Imaging Technique Employing Two-dimensional Electronic Beam Steering, in N. Booth (Ed.), Acoustical holography, Plenum Press, New York, 1973, Vol. 5, pp. 249–259.

    Google Scholar 

  62. Tong, S., Downey, D.B., Cardinal, H. N., and Fenster, A., A Three Dimensional Ultrasound Prostate Imaging System, Ultrasound Med Biol., 1996;22(6):735–746.

    Article  CAS  Google Scholar 

  63. Xu, Q.C., Madhaven, C., Srinivasa, T.T., Yoshikawa S., and Newnham, R.R., Composite Transducer with Multiple Piezoelectric Matching Layers, in IEEE Proc. Ultrason. Symp., 1988, pp. 507–512.

    Google Scholar 

  64. Yaralioglu, G.G., Badi, M.H., Ergun, A.S., Cheng, C.H., Khuri-Yakub, B.T., and Degertekin, F.L., Lamb Wave Devices Using Capacitive Micromachined Ultrasonic Transducers, Appl. Phys. Lett., 2001;78(1):111–113.

    Article  CAS  Google Scholar 

  65. Yaralioglu, G.G., Ergun, A.S., Huang, Y., and Khuri-Yakub, B.T., Capacitive Micromachined Ultrasonic Transducers for Robotic Sensing Applications, in Proceedings IEEE International Conf. on Intelligent Robots and Systems, 2003:2347–2352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Cianci, E., Foglietti, V., Minotti, A., Caronti, A., Caliano, G., Pappalardo, M. (2006). Fabrication Techniques in Micromachined Capacitive Ultrasonic Transducers and their Applications. In: Leondes, C.T. (eds) MEMS/NEMS. Springer, Boston, MA. https://doi.org/10.1007/0-387-25786-1_11

Download citation

Publish with us

Policies and ethics