Skip to main content

Test Stimulus Generation

  • Chapter
  • 1073 Accesses

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 30))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Davis, The Economics of Automatic Testing, McGraw-Hill, London, 1982.

    Google Scholar 

  2. S. D. Millman, “Improving quality: yield versus test coverage”, Journal of Electronic Testing: Theory and Applications, Vol. 5, pp. 253–261, 1994.

    Article  Google Scholar 

  3. B. Davis, “Economic modeling of board test strategies”, Journal of Electronic Testing: Theory and Applications, Vol. 5, pp. 157–170, 1994.

    Google Scholar 

  4. V. Agrawal, C. Kime, K. Saluja, “A Tutorial on Built-In Self-Test”, IEEE Design & Test of Computers, pp. 73–80, March 1993, and pp. 69–77, June 1993.

    Google Scholar 

  5. E. McCluskey, “Built-In Self-Test Techniques”, IEEE Design & Test of Computers, pp. 21–36, April 1985.

    Google Scholar 

  6. J. Abraham, “Fault Modeling in VLSI”, in Advances in CAD for VLSI, Vol. 5: VLSI Testing, T. Williams (ed.), Elsevier Science Publishers, Amsterdam, 1986.

    Google Scholar 

  7. P. Bottorff, “Test Generation and Fault Simulation”, in Advances in CAD for VLSI, Vol. 5: VLSI Testing, T. Williams (ed.), Elsevier Science Publishers, Amsterdam, 1986.

    Google Scholar 

  8. M. Sheu, C. Lee, “Simplifying Sequential Circuit Test Generation”, IEEE Design & Test of Computers, pp. 29–38, Fall 1994.

    Google Scholar 

  9. I. Pomeranz, S. Reddy, “LOCSTEP: A Logic Simulation Based Test Generation Procedure”, Proc. 25th International Symposium on Fault-Tolerant Computing (FTCS-25), Pasadena, CA, pp. 110–119, June 27–30, 1995.

    Google Scholar 

  10. T. Fujino, H. Fujiwara, “An Efficient Test Generation Algorithm Based on Search State Dominance”, Proc. 22nd International Symposium on Fault-Tolerant Computing (FTCS-22), Boston, Mass., pp. 246–253, July 8–10, 1992.

    Google Scholar 

  11. J. Roth, W. Bouricius, P. Schneider, “Programmed Algorithms to Compute Tests to Detect and Distinguish Between Failures in Logic Circuits”, IEEE Trans. Electronic Computers, Vol. EC-16, pp. 547–580, 1967.

    MathSciNet  Google Scholar 

  12. P. Bardell, W. McAnney, J. Savir, Built-in Test for VLSI, Pseudorandom Techniques, John Wiley & Sons, New York, 1987.

    Google Scholar 

  13. B. Murray, J. Hayes, “Testing ICs: Getting to the Core of the Problem”, IEEE Trans. Computers, Vol. 29, No. 11, pp. 32–38, 1996.

    Google Scholar 

  14. A. Fuentes, R. David, B. Courtois, “Random Testing versus Deterministic Testing of RAMs”, Proc. 16th International Symposium on Fault-Tolerant Computing (FTCS-16), Vienna, Austria, pp. 266–271, July 1–4, 1986.

    Google Scholar 

  15. E. Eichelberger et al., Structured Logic Testing, Prentice Hall, Englewood Cliffs, N.J., 1991.

    Google Scholar 

  16. A.S. Sedra and K.C. Smith, Microelectronic Circuits, 4th Edition, Oxford University Press, New York, 1998.

    Google Scholar 

  17. J. Tierney, C.M. Radar and B. Gold, “A digital frequency synthesizer”, IEEE Trans. Audio Electroacoust., Vol. AU-19, pp. 48–57, 1971.

    Google Scholar 

  18. V. Manassewitch, Frequency Synthesizers, Theory and design, 2nd Edn., John Wiley & Sons, New York, 1989.

    Google Scholar 

  19. Stanford Telecom, Direct Digital Synthesizer Handbook, Santa Clara, CA, 1990.

    Google Scholar 

  20. H.T. Nicholas and H. Samueli, “A 150MHz direct digital frequency synthesizer in 1.25um CMOS with-90dBc spurious performance”, IEEE Jour. of Solid-State Circuits, Vol. 26, pp. 1959–1969, 1991.

    Google Scholar 

  21. L.T. Bruton, “Low sensitivity digital ladder filters”, IEEE Trans. Circuits and Syst., Vol. CAS-22, pp. 168–176, 1975.

    Google Scholar 

  22. M.S. Lee and C. Chang, “Switched capacitor filters using the LDI and bilinear transformations”, IEEE Trans. Circuits and Syst., Vol. CAS-28, pp. 265–170, 1981.

    Google Scholar 

  23. L.E. Turner and B.K. Ramesh, “Low sensitivity digital LDI ladder filters with elliptic magnitude response”, IEEE Trans. Circuits and Syst., Vol. CAS-33, pp. 697–706, 1986.

    Google Scholar 

  24. L.E. Turner, “A fully programmable digital oscillator”, CMC Workshop, Kingstone, June 1992.

    Google Scholar 

  25. M.W. Hauser, “Principles of oversampling A/D conversion”, Journal of Audio Engineering Society, Vol. 39, No. 1–2, pp. 3–26, Jan–Feb 1991.

    Google Scholar 

  26. D.A. Johns and D.M. Lewis, “Design and analysis of delta-sigma based IIR filters”, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. CAS-40, No. 4, pp. 233–240, April 1993.

    Google Scholar 

  27. X. Haurie and G.W. Roberts, “Arbitrary-precision signal generation for bandlimited mixed-signal testing”, Proc. 1995 IEEE International Test Conference, Washington, pp. 78–86, October 1995.

    Google Scholar 

  28. A.K. Lu, G.W. Roberts and D.A. Johns, “A high-quality analog oscillator using oversampling D/A conversion techniques”, IEEE Trans. Circuits and Systems-II, Vol. 41, No. 7, pp. 437–444, July 1994.

    MATH  Google Scholar 

  29. J.C. Candy, “A use of double integration in sigma-delta modulation”, IEEE Trans. Communications, Vol. 33, No. 3, pp. 249–258, Mar. 1985.

    Article  Google Scholar 

  30. R. Schreier and M. Snelgrove, “Band pass sigma-delta modulation”, Electronics Letters, Vol. 25, No. 23, pp. 1560–1561, Nov. 1989.

    Google Scholar 

  31. B.R. Veillette and G.W. Roberts, “Delta-sigma oscillators: versatile building blocks”, International Jour. of Circuit Theo. and Appl., Vol. 25, pp. 407–418, 1997.

    Google Scholar 

  32. A.K. Lu and G.W. Roberts, “An analog multi-tone signal generator for built-in self-test applications,” Proc. 1994 IEEE International Test Conference, Washington, pp. 650–659, Oct. 1994.

    Google Scholar 

  33. H.H. Schreiber, “Fault dictionary based upon stimulus design”, IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp. 529–537, September 1979.

    Google Scholar 

  34. S. Sinha and B.V. Raja Rao, “A pseudo random noise generator”, Institution of Engineers (India) Journal-E.T., Vol. 50, pp. 143–146, May 1970.

    Google Scholar 

  35. S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967.

    Google Scholar 

  36. K.J. Astrom and P. Eykhoff, “System identification-a survey”, Automatica, Vol. 7, pp. 123–162, March 1971.

    Article  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

(2005). Test Stimulus Generation. In: Fault Diagnosis of Analog Integrated Circuits. Frontiers in Electronic Testing, vol 30. Springer, Boston, MA. https://doi.org/10.1007/0-387-25743-8_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-25743-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25742-6

  • Online ISBN: 978-0-387-25743-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics