Skip to main content

Drugs of Abuse, AIDS, and the FIV Model

  • Chapter
In vivo Models of HIV Disease and Control

Part of the book series: Infectious Diseases and Pathogenesis ((IAPA))

  • 480 Accesses

Abstract

Drug abuse is an important route of exposure to human immunodeficiency virus-1 (HIV-1). However, the role that drugs of abuse play in lentivirus disease progression remains unclear. There is a pressing need for appropriate animal models to examine the role of drugs of abuse on lentivirus disease progression. The feline immunodeficiency virus (FIV)/cat model is a legitimate system for the study of lentivirus-induced disease. Not only does FIV produce a disease that is very similar to human acquired immune deficiency syndrome (AIDS), but it is also similar to HIV-1 at both the molecular and biochemical levels. In this chapter, we will concentrate on the interactions of opiates and methamphetamine with lentivirus-induced disease, emphasizing the use of the FIV model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balster, R. L., Kilbey, M. M., and Ellinwood, E. H., Jr. (1976). Methamphetamine self-administration in the cat. Psychopharmacologia 46:229–233.

    Article  PubMed  CAS  Google Scholar 

  • Barlough, J. E., Ackley, C. D., George, J. W., Levy, N., Acevedo, R., Moore, P. F., Rideout, B. A., Cooper, M. D., and Pedersen, N. C. (1991). Acquired immune dysfunction in cats with experimentally induced feline immunodeficiency virus infection: comparison of short-term and long-term infections. J. Acquir. Immune Defic. Syndr. 4:219–227.

    PubMed  CAS  Google Scholar 

  • Barr, M. C., Billaud, J. N., Selway, D. R., Huitron-Resendiz, S., Osborn, K. G., Henriksen, S. J., and Phillips, T. R. (2000). Effects of multiple acute morphine exposures on feline immunodeficiency virus disease progression. J. Infect. Dis. 182:725–732.

    Article  PubMed  CAS  Google Scholar 

  • Barr, M. C., Huitron-Resendiz, S., Sanchez-Alavez, M., Henriksen, S. J., and Phillips, T. R. (2003). Escalating morphine exposures followed by withdrawal in feline immunodeficiency virus-infected cats: a model for HIV infection in chronic opiate abusers. Drug Alcohol Depend. 72:141–149.

    Article  PubMed  CAS  Google Scholar 

  • Billaud, J. N., Selway, D., Yu, N., and Phillips, T. R. (2000). Replication rate of feline immunodeficiency virus in astrocytes is envelope dependent: implications for glutamate uptake. Virology 266:180–188.

    Article  PubMed  CAS  Google Scholar 

  • Billet, O., Billaud, J. N., and Phillips, T. R. (2001). Partial characterization and tissue distribution of the feline mu opiate receptor. Drug Alcohol Depend. 62:125–129.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, S. A., Williams, N. A., Gruffydd, J. T., Harbour, D. A., and Stokes, C. R. (1992). Impaired T-cell priming and proliferation in cats infected with feline immunodeficiency virus. AIDS 6:287–293.

    Article  PubMed  CAS  Google Scholar 

  • Brown, W. C., Bissey, L., Logan, K. S., Pedersen, N. C., Elder, J. H., and Collisson, E. W. (1991). Feline immunodeficiency virus infects both CD4+ and CD8+ T lymphocytes. J. Virol. 65:3359–3364.

    PubMed  CAS  Google Scholar 

  • Burkhard, M. J. and Dean, G. A. (2003). Transmission and immunopathogenesis of FIV in cats as a model for HIV. Curr. HIV Res. 1:15–29.

    Article  PubMed  CAS  Google Scholar 

  • Cloak, C. C., Chang, L., Ernst, T., Barr, M. C., Huitron-Resendiz, S., Sanchez-Alavez, M., Phillips, T. R., and Henriksen, S. (2004). Methamphetamine and AIDS: 1HMRS studies in a feline model of human disease. J. Neuroimmunol. 147:16–20.

    Article  PubMed  CAS  Google Scholar 

  • de Andres, I., Villablanca, J. R., and Burgess, J. W. (1984). Reassessing morphine effects in cats: II. Protracted effects on sleep-wakefulness and the EEG. Pharmacol. Biochem. Behav. 21:923–928.

    PubMed  Google Scholar 

  • Dewhurst, S., Sakai, K., Bresser, J., Stevenson, M., Evinger-Hodges, M. J., and Volsky, D. J. (1987). Persistent productive infection of human glial cells by human immunodeficiency virus (HIV) and by infectious molecular clones of HIV. J. Virol. 61:3774–3782.

    PubMed  CAS  Google Scholar 

  • Donahoe, R. M. and Vlahov, D. (1998). Opiates as potential cofactors in progression of HIV-1 infections to AIDS. J. Neuroimmunol. 83:77–87.

    Article  PubMed  CAS  Google Scholar 

  • Dow, S. W., Poss, M. L., and Hoover, E. A. (1990). Feline immunodeficiency virus: a neurotropic lentivirus. J Acquir. Immune Defic. Syndr. 3:658–668.

    PubMed  CAS  Google Scholar 

  • Erfle, V., Stoeckbauer, P., Kleinschmidt, A., Kohleisen, B., Mellert, W., Stavrou, D., and Brack-Werner, R. (1991). Target cells for HIV in the central nervous system: macrophages or glial cells? Res. Virol. 142:139–144.

    Article  PubMed  CAS  Google Scholar 

  • Fox, H. S. and Phillips, T. R. (2002). FIV and neuroAIDS. J. Neurovirol. 8:155–157.

    Article  PubMed  Google Scholar 

  • Friedman, L. N., Williams, M. T., Singh, T. P., and Frieden, T. R. (1996). Tuberculosis, AIDS, and death among substance abusers on welfare in New York City. N. Engl. J. Med. 334:828–833.

    Article  PubMed  CAS  Google Scholar 

  • Gavrilin, M. A., Mathes, L. E., and Podell, M. (2002). Methamphetamine enhances cellassociated feline immunodeficiency virus replication in astrocytes. J. Neurovirol. 8:240–249.

    Article  PubMed  CAS  Google Scholar 

  • Gendelman, H. E., Lipton, S. A., Tardieu, M., Bukrinsky, M. I. and Nottet, H. S. L. M. (1994). The neuropathogenesis of HIV-1 infection. J. Leukoc. Biol. 56:389–398.

    PubMed  CAS  Google Scholar 

  • Genis, P., Jett, M., Bernton, E. W., Boyle, T., Gelhard, H. A., Dzenko, K., Keane, R. W., Resnick, L., Mizrachi, Y., Volski, D. J., Epstein, L. G., and Gendelman, H. E. (1992). Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV Disease. J. Exp. Med. 176:1703–1718.

    Article  PubMed  CAS  Google Scholar 

  • Giulian, D., Yu, J., Tom, D., Li, J., Wendt, E., Lin, S. N., Schwarcz, R., and Noonan, C. (1996). Study of receptor-mediated neurotoxins released by HIV-1-infected mononuclear phagocytes found in human brain. J. Neurosci. 16:3139–3153.

    PubMed  CAS  Google Scholar 

  • Gruol, D. L., Yu, N., Parsons, K. L., Billaud, J. N., Elder, J. H., and Phillips, T. R. (1998). Neurotoxic effects of feline immunodeficiency virus, FIV-PPR. J. Neurovirol. 4:415–425.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, G. R., Rau, K. S., and Fleckenstein, A. E. (2004). The methamphetamine experience: a NIDA partnership. Neuropharmacology 47(Suppl. 1):92–100.

    Article  PubMed  CAS  Google Scholar 

  • Harris, C. M., Villablanca, J. R., Burgess, J. W., and de Andres, I. (1984). Reassessing morphine effects in cats: III. Responses of intact, caudate nuclei-lesioned and hemispherectomized animals following chronic administration and precipitated withdrawal. Pharmacol. Biochem. Behav. 21:929–936.

    PubMed  CAS  Google Scholar 

  • Henriksen, S. J., Prospero-Garcia, O., Phillips, T. R., Fox, H. S., Bloom, F. E., and Elder, J. H. (1995). Feline immunodeficiency virus as a model for study of lentivirus infection of the central nervous system. In Oldstone, M. and Vitkovic, L. (eds.), Current topics in Microbiology and Immunology: HIV and Dementia (vol. 202, pp. 167–186). New York: Springer-Verlag.

    Google Scholar 

  • Huitron-Resendiz, S., Barr, M. C., Choi, S. J., Crawford, E., Leutenegger, C. M., Parsons, L. H., Henriksen, S. J., and Phillips, T. R. Methamphetamine and lentivirus interactions: reciprocal enhancement of CNS disease. Submitted for publication.

    Google Scholar 

  • Hosie, M. J., Willett, B. J., Dunsford, T. H., Jarrett, O., and Neil, J. C. (1993). A monoclonal antibody which blocks infection with feline immunodeficiency virus identifies a possible non-CD4 receptor. J. Virol. 67:1667–1671.

    PubMed  CAS  Google Scholar 

  • Isawa, M., Maeno, Y., Inoue, H., Koyama, H., and Matoba, R. (1996). Induction of apoptotic cell death in rat thymus and spleen after a bolus injection of methamphetamine. Int. J. Legal Med. 109:23–28.

    Article  Google Scholar 

  • Ishida, T. and Tomoda, I. (1990). Clinical staging of feline immunodeficiency virus infection. Nippon Juigaku Zasshi 52:645–648.

    PubMed  CAS  Google Scholar 

  • Johnston, J. B. and Power, C. (2002). Feline immunodeficiency virus xenoinfection: the role of chemokine receptors and envelope diversity. J. Virol. 76:3626–3636.

    Article  PubMed  CAS  Google Scholar 

  • Kita, T., Wagner, G. C., and Nakashima, T. (2003). Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption. J. Pharmacol. Sci. 92:178–195.

    Article  PubMed  CAS  Google Scholar 

  • Kreek, M. J. (1990). Immune function in heroin addicts and former heroin addicts in treatment: pre-and post-AIDS epidemic. NIDA Res. Monogr. 96:192–219.

    PubMed  CAS  Google Scholar 

  • Levy, J. A. 1993. Pathogenesis of human immunodeficiency virus infection. Microbiol. Rev. 57:183–289.

    PubMed  CAS  Google Scholar 

  • Lin, D. S., Bowman, D. D., Jacobson, R. H., Barr, M. C., Fevereiro, M., Williams, J. R., Noronha, F. M., Scott, F. W., and Avery, R. J. (1990). Suppression of lymphocyte blastogenesis to mitogens in cats experimentally infected with feline immunodeficiency virus. Vet. Immunol. Immunopathol. 26:183–189.

    Article  PubMed  CAS  Google Scholar 

  • Lyles, C. M., Margolick, J. B., Astemborski, J., Graham, N. M., Anthony, J. C., Hoover, D. R., and Vlahov, D. (1997). The influence of drug use patterns on the rate of CD4+ lymphocyte decline among HIV-1-infected injecting drug users. AIDS 11:1255–1262.

    Article  PubMed  CAS  Google Scholar 

  • Mientjes, G. H., Miedema, F., van Ameijden, E. J., van den Hoek, A. A., Schellekens, P. T., Roos, M. T., and Coutinho, R. A. (1991). Frequent injecting impairs lymphocyte reactivity in HIV-positive and HIV-negative drug users. AIDS 5:35–41.

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa, T., Tomonaga, K., Kawaguchi, Y., and Mikami, T. (1994). The genome of feline immunodeficiency virus. Arch. Virol. 134:221–234.

    Article  PubMed  CAS  Google Scholar 

  • NIDA. Research Report Series. Heroin: abuse and addiction (1997; reprinted 2000). Bethesda. Updated December 7, 2004. Retrieved from January 6, 2005 http://www.drugabuse.gov/ResearchReports/Heroin/heroin2.html.

    Google Scholar 

  • NIDA. Research Report Series. Methamphetamine: abuse and addiction (1998; reprinted 2002). Bethesda. Updated December 7, 2004. Retrieved from http://www.nida.nih.gov/ResearchReports/methamph/methamph.html.

    Google Scholar 

  • North, T. W., Cronn, R. C., Remington, K. M., and Tandberg, R. T. (1990a). Direct comparisons of inhibitor sensitivities of reverse transcriptases from feline and human immunodeficiency viruses. Br. Vet. J. 146:468–475.

    Google Scholar 

  • North, T. W., Cronn, R. C., Remington, K. M., Tandberg, R. T., and Judd, R. C. (1990b). Characterization of reverse transcriptase from feline immunodeficiency virus. J. Biol. Chem. 265:5121–5128.

    PubMed  CAS  Google Scholar 

  • Peterson, P. K., Gekker, G., Hu, S., Anderson, W. R., Kravitz, F., Portoghese, P. S., Balfour, H. H., Jr., and Chao, C. C. (1994). Morphine amplifies HIV-1 expression in chronically infected promonocytes cocultured with human brain cells. J. Neuroimmunol. 50:167–175.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, N. C., Ho, E. W., Brown, M. L., and Yamamoto, J. K. (1987). Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:790–793.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, P. K., Sharp, B. M., Gekker, G., Portoghese, P. S., Sannerud, K., and Balfour, H. H., Jr. (1990). Morphine promotes the growth of HIV-1 in human peripheral blood mononuclear cell cocultures. AIDS 4:869–873.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, P. K., Molitor, T. W., and Chao, C. C. (1998). The opioid-cytokine connection. J. Neuroimmunol. 83:63–69.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, T. R., Billaud, J. N., and Henriksen, S. J. (2000). Methamphetamine and HIV-1: potential interactions and the use of the FIV/cat model. J. Psychopharmacol. 14:244–250.

    PubMed  CAS  Google Scholar 

  • Phillips, T. R., Lamont, C., Konings, D. A. M., Shacklett, B. L., Hamson, C. A., Luciw, P. A., and Elder, J. H. (1992). Identification of the rev transactivation and rev-responsive elements of feline immunodeficiency virus. J. Virol. 66:5464–5471.

    PubMed  CAS  Google Scholar 

  • Phillips, T. R., Prospero-Garcia, O., Puaoi, D. L., Lerner, D. L., Fox, H. S., Olmsted, R. A., Bloom, F. E., Henriksen, S. J., and Elder, J. H. (1994). Neurological abnormalities associated with feline immunodeficiency virus infection. J. Gen. Virol. 75:979–987.

    Article  PubMed  CAS  Google Scholar 

  • Podell, M., March, P. A., Buck, W. R., and Mathes, L. E. (2000). The feline model of neuroAIDS: understanding the progression towards AIDS dementia. J. Psychopharmacol. 14:205–213.

    PubMed  CAS  Google Scholar 

  • Podell, M., Oglesbee, M., Mathes, L., Krakowka, S., Olmsted, R., and Lafrado, L. (1993). AIDS-associated encephalopathy with experimental feline immunodeficiency virus infection. J. Acquir. Immune Defic. Syndr. 6:758–771.

    PubMed  CAS  Google Scholar 

  • Power, C., Moench, T., Peeling, J., Kong, P. A., and Langelier, T. (1997). Feline immunodeficiency virus causes increased glutamate levels and neuronal loss in brain. Neuroscience 77:1175–1185.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, J., Pancino, G., Merat, R., Leste-Lasserre, T., Moraillon, A., Schneider-Mergener, J., Alizon, M., Sonigo, P., and Heveker, N. (1999). Shared usage of the chemokine receptor CXCR4 by primary and laboratory-adapted strains of feline immunodeficiency virus. J. Virol. 73:3661–3671.

    PubMed  CAS  Google Scholar 

  • Risdahl, J. M., Peterson, P. K., Chao, C. C., Pijoan, C., and Molitor, T. W. (1993). Effects of morphine dependence on the pathogenesis of swine herpesvirus infection. J. Infect. Dis. 167:1281–1287.

    PubMed  CAS  Google Scholar 

  • Ross, M. W. and Williams, M. L. (2001). Sexual behavior and illicit drug use. Annu. Rev. Sex Res. 12:290–310.

    PubMed  CAS  Google Scholar 

  • Schweitzer, C., Keller, F., Schmitt, M. P., Jaeck, D., Adloff, M., Schmitt, C., Royer, C., Kirn, A., and Aubertin, A. M. (1991). Morphine stimulates HIV replication in primary cultures of human Kupffer cells. Res. Virol. 142:189–195.

    Article  PubMed  CAS  Google Scholar 

  • Sharpless, N. E., O’Brien, W. A., Verdin, Kufta, C. V., Chen, I. S., and Dubois, D. M. (1992). Human immunodeficiency virus type 1 tropism for brain microglial cells is determined by a region of the env glycoprotein that also controls macrophage tropism. J. Virol. 66:2588–2593.

    PubMed  CAS  Google Scholar 

  • Shimojima, M., Miyazawa, T., Ikeda, Y., McMonagle, E. L., Haining, H., Akashi, H., Takeuchi, Y., Hosie, M. J., and Willett, B. J. (2004). Use of CD134 as a primary receptor by the feline immunodeficiency virus. Science 303:1192–1195.

    Article  PubMed  CAS  Google Scholar 

  • Sparger, E. E., Shacklett, B. L., Renshaw, G. L., Barry, P. A., Pedersen, N. C., Elder, J. H., and Luciw, P. A. (1992). Regulation of gene expression directed by the long terminal repeat of the feline immunodeficiency virus. Virology 187:165–177.

    Article  PubMed  CAS  Google Scholar 

  • Spijkerman, I. J., Langendam, M. W., Veugelers, P. J., van Ameijden, E. J., Keet, I. P., Geskus, R. B., van den Hoek, A., and Coutinho, R. A. (1996). Differences in progression to AIDS between injection drug users and homosexual men with documented dates of seroconversion. Epidemiology 7:571–577.

    Article  PubMed  CAS  Google Scholar 

  • Starec, M., Rouveix, B., Sinet, M., Chau, F., Desforges, B., Pocidalo, J. J., and Lechat, P. (1991). Immune status and survival of opiate-and cocaine-treated mice infected with Friend virus. J. Pharmacol. Exp. Ther. 259:745–750.

    PubMed  CAS  Google Scholar 

  • Uhl, E. W., Heaton-Jones, T. G., Pu, R., and Yamamoto, J. K. (2002). FIV vaccine development and its importance to veterinary and human medicine: a review. FIV vaccine 2002 update and review. Vet Immunol. Immunopathol. 90:113–132.

    Article  PubMed  CAS  Google Scholar 

  • United Nations, Office on Drugs and Crime. World Drug Report (2004). Vienna. Retrieved from January 3, 2005 http://unodc.org/world_drug_report.html.

    Google Scholar 

  • Veyries, M. L., Sinet, M., Desforges, B., and Rouveix, B. (1995). Effects of morphine on the pathogenesis of murine Friend retrovirus infection. J. Pharmacol. Exp. Ther. 272:498–504.

    PubMed  CAS  Google Scholar 

  • Villablanca, J. R., Harris, C. M., Burgess, J. W., and de Andres, I. (1984). Reassessing morphine effects in cats: I. Specific behavioral responses in intact and unilaterally brainlesioned animals. Pharmacol. Biochem. Behav. 21:913–921.

    Article  PubMed  CAS  Google Scholar 

  • White, J. M. (2004). Pleasure into pain: the consequences of long-term opioid use. Addict. Behav. 29:1311–1324.

    Article  PubMed  Google Scholar 

  • Willett, B. J., Picard, L., Hosie, M. J., Turner, J. D., Adema, K., and Clapham, P. R. (1997). Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. J. Virol. 71:6407–6415.

    PubMed  CAS  Google Scholar 

  • Willis, A. M. (2000). Feline leukemia virus and feline immunodeficiency virus. Vet. Clin. North Am. Small Anim. Pract. 30:971–986.

    PubMed  CAS  Google Scholar 

  • Yu, N., Billaud, J. N., and Phillips, T. R. (1998). Effects of feline immunodeficiency virus on astrocyte glutamate uptake: implications for lentivirus-induced central nervous system diseases. Proc. Natl. Acad. Sci. USA 95:2624–2629.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Q., Larson, D. F., and Watson, R. R. (2003). Heart disease, methamphetamine, and AIDS. Life Sciences 73:129–140.

    Article  PubMed  CAS  Google Scholar 

  • Zenger, E., Tiffany-Castiglioni, E., and Collisson, E. W. (1997). Cellular mechanisms of feline immunodeficiency virus (FIV)-induced neuropathogenesis. Front. Biosci. 2:d527–537.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Barr, M.C., Testa, M.P., Phillips, T.R. (2006). Drugs of Abuse, AIDS, and the FIV Model. In: Friedman, H., Specter, S., Bendinelli, M. (eds) In vivo Models of HIV Disease and Control. Infectious Diseases and Pathogenesis. Springer, Boston, MA. https://doi.org/10.1007/0-387-25741-1_9

Download citation

Publish with us

Policies and ethics