Skip to main content

Semantic Interpretation for the Biomedical Research Literature

  • Chapter
Medical Informatics

Part of the book series: Integrated Series in Information Systems ((ISIS,volume 8))

Chapter Overview

Natural language processing is increasingly used to support biomedical applications that manipulate information rather than documents. Examples include automatic summarization, question answering, and literature-based scientific discovery. Semantic processing is a method of automatic language analysis that identifies concepts and relationships to represent document content. The identification of this information depends on structured knowledge, and in the biomedical domain, one such resource is the Unified Medical Language System. After providing some linguistic background, we discuss several semantic interpretation systems being developed in biomedicine. Finally, we briefly investigate two applications that exploit semantic information in MEDLINE citations; one focuses on automatic summarization and the other is directed at information extraction for molecular biology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronson, A. R. (2001). “Effective Mapping of Biomedical Text to the UMLS Metathesaurus: The MetaMap Program,” in Proceedings of the AMIA Symposium, 17–21.

    Google Scholar 

  • Cimino, J. J. (1996). “Linking Patient Information Systems to Bibliographic Resources,” Methods of Information in Medicine, 35, 122–6.

    PubMed  CAS  Google Scholar 

  • Cimino, J. J. and Barnett, G. O. (1993). “Automatic Knowledge Acquisition from MEDLINE,” Methods of Information in Medicine, 32, 120–30.

    PubMed  CAS  Google Scholar 

  • Christensen, L., Haug, P. J., and Fiszman, M. (2002). “MPLUS: A Probabilistic Medical Language Understanding System,” ACL Workshop on Natural Language Processing in the Biomedical Domain, 29–36.

    Google Scholar 

  • Fiszman, M., Rindflesch, T. C., and Kilicoglu, H. (2003). “Integrating a Hypernymic Proposition Interpreter into a Semantic Processor for Biomedical Text,” in Proceedings of the AMIA Symposium, 239–43.

    Google Scholar 

  • Fiszman, M., Rindflesch, T. C., and Kilicoglu, H. (2004). “Abstraction Summarization for Managing the Biomedical Research Literature,” in Proceedings of the Workshop on Computational Lexical Semantics, 76–83. HLT-NAACL.

    Google Scholar 

  • Fuller, S., Revere, D., Bugni P., and Martin, G.M. “Telemakus: A Schema-based Information System to Promote Scientific Discovery,” Journal of the American Society for Information Science and Technology, in press.

    Google Scholar 

  • Friedman, C., Alderson, P. O., Austin, J. H., Cimino, J. J., and Johnson, S. B. (1994). “A General Natural-language Text Processor for Clinical Radiology,” Journal of the American Medical Informatics Association, 1(2), 161–74.

    PubMed  CAS  Google Scholar 

  • Grishman, R., Huttunen, S., and Yangarger, R. (2002). “Information Extraction for Enhanced Access to Disease Outbreak Reports,” Journal of Biomedical Informatics, 35(4), 236–46.

    Article  PubMed  Google Scholar 

  • Hahn, U. and Reimer, U. (1999). “Knowledge-based Text Summarization: Salience and Generalization Operators for Knowledge Base Abstraction,” in I. Mani (Ed.), Advances in Automatic Summarization, Cambridge, MA: MIT Press. 215–32.

    Google Scholar 

  • Hahn, U., Romacker, M., and Schulz, S. (2002). “MEDSYNDIKATE—Design Considerations for an Ontology-based Medical Text Understanding System,” in Proceedings of the AMIA Symposium, 330–4.

    Google Scholar 

  • Humphreys, B. L., Lindberg, D.A., Schoolman, H.M., and Barnett, G.O. (1998). “The Unified Medical Language System: An Informatics Research Collaboration,” Journal of the American Medical Informatics Association, 5(1), 1–11.

    PubMed  CAS  Google Scholar 

  • Jacquelinet, C., Burgun, A., Delamarre, D., Strang, N., Djabbour, S., Boutin, B., and Le Beux, P. (2003). “Developing the Ontological Foundations of a Terminological System for End-stage Diseases, Organ Failure, Dialysis and Transplantation,” International Journal of Medical Informatics, 70(2–3), 317–28.

    Article  PubMed  Google Scholar 

  • Jacquemart, P. and Zweigenbaum P. (2003). “Towards a Medical Question-answering System: A Feasibility Study,” Stud Health Technol Inform, 95, 463–8.

    PubMed  Google Scholar 

  • Johnson, S. B., Aguirre, A., Peng, P., and Cimino, J. J. (1993). “Interpreting Natural Language Queries Using the UMLS,” in Proceedings of the AMIA Symposium, 294–8.

    Google Scholar 

  • Johnson, S. B. and Gottfried, M. (1989). “Sublanguage Analysis as a Basis for Controlled Medical Vocabulary,” SCAMC, 519–23.

    Google Scholar 

  • Leroy, G., Chen, H., and Martinez, J.D. (2003). “A Shallow Parser Based on Closed-class Words to Capture Relations in Biomedical Text,” Journal of Biomedical Informatics, 36(3), 145:58.

    Article  PubMed  Google Scholar 

  • Libbus, B., Kilicoglu, H., Rindflesch, T. C., Mork, J. G., and Aronson, A. R. (2004). “Using Natural Language Processing, Locus Link, and the Gene Ontology to Compare OMIM to MEDLINE,” in Proceedings of the Workshop on Linking the Biological Literature, Ontologies and Databases: Tools for Users, 69–76. HLT-NAACL.

    Google Scholar 

  • McCray, A. T. (2003). “An Upper-level Ontology for the Biomedical Domain,” Comp Funct Genom, 4, 80–4.

    Article  Google Scholar 

  • McCray, A. T., Burgun, A., and Bodenreider, O. (2001). “Aggregating UMLS Semantic Types for Reducing Conceptual Complexity,” in Medinfo, 10(Pt 1), 216–20.

    PubMed  CAS  Google Scholar 

  • McCray, A. T., Srinivasan, S., and Browne, A. C. (1994). “Lexical Methods for Managing Variation in Biomedical Terminologies,” SCAMC, 235–9.

    Google Scholar 

  • Mendonca, E. A. and Cimino, J. J. (2000). “Automated Knowledge Extraction from MEDLINE Citations,” in Proceedings of the AMIA Symposium, 575–9.

    Google Scholar 

  • Mendonca, E. A., Johnson, S. B., Seol, Y., and Cimino, J. J. (2002). “Analyzing the Semantics of Patient Data to Rank Records of Literature Retrieval,” ACL Workshop on Natural Language Processing in the Biomedical Domain, 69–76.

    Google Scholar 

  • Pakhomov, S. V., Ruggieri, A., and Chute, C. G. (2002). “Maximum Entropy Modeling for Mining Patient Medication Status from Free Text,” in Proceedings of the AMIA Symposium, 587–91.

    Google Scholar 

  • Rindflesch, T. C., and Fiszman, M. (2003). “The Interaction of Domain Knowledge and Linguistic Structure in Natural Language Processing: Interpreting Hypernymic Propositions in Biomedical Text,” Journal of Biomedical Informatics, 36(6), 462–77.

    Article  PubMed  Google Scholar 

  • Rindflesch, T. C., Libbus, B., Hristovski, D., Aronson, A. R., and Kilicoglu, H. (2003). “Semantic Relations Asserting the Etiology of Genetic Diseases,” in Proceedings of the AMIA Symposium, 554–8.

    Google Scholar 

  • Smith, L., Rindflesch, T., and Wilbur, W. J. (2004). “MedPost: A Part of Speech Tagger for Biomedical Text,” Bioinformatics, in press.

    Google Scholar 

  • Sowa, J. F. (2000). Knowledge Representation, Pacific Grove: Brooks/Cole.

    Google Scholar 

  • Srinivasan P. and Libbus, B. (2004). “Mining MEDLINE for Implicit Links Between Dietary Substances and Diseases,” Bioinformatics, 20, i290–i296.

    Article  PubMed  CAS  Google Scholar 

  • Taira, R. K., and Soderland, S. G. (1999). “A Statistical Natural Language Processor for Medical Reports,” in Proceedings of the AMIA Symposium, 970–4.

    Google Scholar 

  • Tanabe, L. and Wilbur, W. J. (2002). “Tagging Gene and Protein Names in Biomedical Text,” Bioinformatics, 18(8), 1124–32.

    Article  PubMed  CAS  Google Scholar 

Suggested Readings

  • Friedman, C. and Hripcsak, G. (1999). “Natural Language Processing and its Future in Medicine,” Acad Med, 74(8), 890–5.

    Article  PubMed  CAS  Google Scholar 

  • Jurafsky, D. and Martin J.H. (2000). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, 1sted., Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Rindflesch, T. C. and Aronson, A.R. (2002). “Semantic Processing for Enhanced Access to Biomedical Knowledge,” in Real World Semantic Web Applications, V. Kashyap and L. Shklar (Eds.), IOS Press, 157–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Rindflesch, T.C., Fiszman, M., Libbus, B. (2005). Semantic Interpretation for the Biomedical Research Literature. In: Chen, H., Fuller, S.S., Friedman, C., Hersh, W. (eds) Medical Informatics. Integrated Series in Information Systems, vol 8. Springer, Boston, MA. https://doi.org/10.1007/0-387-25739-X_14

Download citation

  • DOI: https://doi.org/10.1007/0-387-25739-X_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24381-8

  • Online ISBN: 978-0-387-25739-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics