Advertisement

Damage and Repair of Ion-Implanted Dna

Chapter
  • 478 Downloads

Keywords

Single Strand Base Substitution lacZ Gene Base Mutation Transfection Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dickerson, R.E., et al., The Anatomy of A-, B-and Z-DNA, Science, 216(1982)475–483.CrossRefGoogle Scholar
  2. 2.
    Barinaga, M., Forging a Path to Cell Death, Science, 273(1996)735–737.CrossRefGoogle Scholar
  3. 3.
    Voet, D. and Voet, J.G., Biochemistry (2nd ed., John Wiley & Sons, New York, 1995).Google Scholar
  4. 4.
    Yang, J.B., Wu, L.J., Li, L., Yu, Z.L. and Xu, Z.H., Sequence Analysis of lacZMutations Induced by Ion Beam Irradiation in Double-Stranded M13mp18DNA, Science in China (Series C), 40(1997)107–112.Google Scholar
  5. 5.
    Cairns, J., Overbaugh, J., Miller, S., The Origin of Mutants, Nature, 335(1988)142–145.CrossRefGoogle Scholar
  6. 6.
    Cairns, J. and Foster, P.L., Adaptive Reversion of a Frameshift Mutation in Echerichia Coli, Genetics, 128(1991)670–695.Google Scholar
  7. 7.
    Rosenberg, S.M., Evolving Responsively: Adaptive Mutation, Nat. Rev. Genet., 2(2001)504–515.CrossRefGoogle Scholar
  8. 8.
    Hendrickson, H., Slechta, E.S., Bergthorsson, U., Andersson, D.I., Roth, J.R., Amplification-Mutagenesis: Evidence that Directed Adaptive Mutation and General Hypermutability Result from Growth with a Selected Gene Amplification. Proc. Natl. Acad. Sci. U.S.A., 99(2002)2164–2169.CrossRefGoogle Scholar
  9. 9.
    Xie, C.X., Guo, J.H., Yu, Z.L., et al., Evidence for Base Substitutions and Repair of DNA Mismatch Damage Induced by Low Energy N+ Beam Implantation in E. Coli, High Technology Letters (English version), 9(2)(2003)1–6.Google Scholar
  10. 10.
    Jin, D.J., Cashel, M., Friedman, D.I., Nakamura, Y., Walter, W.A. and Gross, C.A., Effects of Rifampicin Resistant rpoB Mutations on Antitermination and Interaction with NusA in Escherichia Coli, J. Mol. Biol., 204(1988)247–261.CrossRefGoogle Scholar
  11. 11.
    Jin, D.J. and Gross, C.A., Mapping and Sequencing of Mutations in the Escherichia Coli rpoB Gene that Lead to Rifampicin Resistance, J. Mol. Biol., 202(1988)45–58.CrossRefGoogle Scholar
  12. 12.
    Matic, I., Radman, M., Taddei, F., Picard, B., Doit, C., Bingen, E., Denamur, E. and Elion, J., Highly Variable Mutation Rates in Commensal and Pathogenic Escherichia Coli, Science, 277(1997)1833–1834.CrossRefGoogle Scholar
  13. 13.
    Miller, J.H., Funchain, P., Clendenin, W., Huang, T., Nguyen, A., Wolff, E., Yeung, A., Chiang, J.H., Garibyan L., Slupska M.M. and Yang H.J., Escherichia Coli Strains (ndk) Lacking Nucleoside Diphosphate Kinase Are Powerful Mutators for Base Substitutions and Frameshifts in Mismatch-Repair-Deficient Strains, Genetics, 162(2002)5–13.Google Scholar
  14. 14.
    Severinov, K., Soushko, M., Goldfarb, A. and Nikiforov, V., Rifampicin Region Revisited New Rifampicin-Resistant and Streptolydigin-Resistant Mutants in the Beta Subunit of Escherichia Coli RNA Polymerase, J. Biol. Chem., 268(1993)14820–14825.Google Scholar
  15. 15.
    Wang, D., Kreutzer, D.A. and Essigmann, J.M., Mutagenecity and Repair of Oxidative DNA Damage: Insight from Studies Using Defined Lesions, Mutation Res., 400(1998)99–115.Google Scholar

Further Reading

  1. 1.
    Dickerson, R.E., et al., The Anatomy of A-, B-and Z-DNA, Science 216(1982)475–483.CrossRefGoogle Scholar
  2. 2.
    Voet, D. and Voet, J.G., Biochemistry (2nd ed., John Wiley & Sons, New York, 1995).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Personalised recommendations