Advertisement

Single-Ion Beam Mutation of Cells

Chapter
  • 482 Downloads

Keywords

Alpha Particle Uranium Miner Bystander Effect Irradiate Cell Clonogenic Survivor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Committee on the Biological Effects of Ionizing Radiations, Health Effects of Exposure to Low Levels of Ionizing Radiation (BEIR V) (Natl. Acad. Press, Washington D.C., 1990).Google Scholar
  2. 2.
    Samet, J.M., Kutvirt, D.M., Waxweiler, P.J. and Key, C.R., Uranium Mining and Lung Cancer in Navajo Men, New Engl. J. Med., 39(5)(1984)355–359.Google Scholar
  3. 3.
    Roscoe, R.J., Steenland, K., Halperin, W.E., Beaumont, J.J. and Waxwiler, R.J., Lung Cancer Mortality among Nonsmoking Uranium Miners Exposed to Radon Daughters, J. Am. Med. Assoc., 262(1989)629–633.CrossRefGoogle Scholar
  4. 4.
    Tomasek, L., Swerdlow, A.J., Darby, S.C., Placek, V. and Kunz, E., Mortality in Uranium Miners in Western Bohemia: A Long-Term Cohort Study, Occup. Environ. Med., 51a(1994)308–315.CrossRefGoogle Scholar
  5. 5.
    Kusiak, R.A., Ritchie, A., Muller, J. and Springer, J., Mortality from Lung Cancer in Ontario Uranium Miners, Br. J. Ind. Med., 60(1993)920–928.Google Scholar
  6. 6.
    NRC Report on Health Effects of Exposure to Radon, National Academy of Sciences, 1994.Google Scholar
  7. 7.
    Brenner, D.J., Unfolding the Poisson Distribution: Can Mathematical Tricks Do As Well As a Single-Particle Microbeam? In Michael, B.D., Folkard, M. and Prise, K.M. (Ed), Microbeam Probes of Cellular Radiation Response (C.R.C. Gray Laboratory, London, UK, 1993)pp. 1.3.1–1.3.4.Google Scholar
  8. 8.
    Marples, B. and Joiner, M.C., The Response of Chinese Hamster V79 Cells to Low Radiation Doses: Evidence of Enhanced Sensitivity of the Whole Cell Population, Radiation Research, 133(1993)41–51.CrossRefGoogle Scholar
  9. 9.
    Lambin, P., Marples, B., Fertil, B., Malaise, E.P. and Joiner, M.C., Hypersensitivity of a Human Tumour Cell Line to Very Low Radiation Doses, Int. J. Radiat. Biol., 63(1993)639–650.CrossRefGoogle Scholar
  10. 10.
    James, S.J., Enger, S.M. and Makinodan, T., DNA Strand Breaks and DNA Repair Response in Lymphocytes after Chronic in vivo Exposure to Very Low Doses of Ionizing Radiation in Mice, Mutation Research, 249(1991)255–263.Google Scholar
  11. 11.
    Barendsen, G.W., Impairment of the Proliferative Capacity of Human Cells in Culture by α-Particles with Differing Linear-Energy Transfer, International Journal of Radiation Biology, 8(1964)453–466.CrossRefGoogle Scholar
  12. 12.
    Watt, D.E., An Approach Towards a Unified Theory of Damage to Mammalian Cells by Ionising Radiation for Absolute Dosimetry, Radiat. Protect. Dosi., 27(1989)73–84.Google Scholar
  13. 13.
    Hei, T.K., Wu, L.J., Liu, L.X., Randers-Pehrson, G. and Hall, E.J., Proc. Annual Meeting of the Radiation Research Society, 43(1996)161.Google Scholar
  14. 14.
    Zhu, L.X., Waldren, C.A., Vannais, D. and Hei, T.K., Cellular and Molecular Analysis of Mutagenesis Induced by Charged Particles of Defined Linear Energy Transfer, Radiat. Res., 145(1996)251–259.CrossRefGoogle Scholar
  15. 15.
    Hei, T.K., Zhu, L.X., Vannais, D. and Waldren, C.A., Molecular Analysis of Mutagenesis by High LET Radiation, Adv. Space Res., 14(10)(1994) 355–361.CrossRefGoogle Scholar
  16. 16.
    Miller, R.C., Randers-Pehrson, G., Geard, C.R., Hall, E.J., and Brenner, D.J., The Oncogenic Transforming Potential of the Passage of Single α-Particles through Mammalian Cell Nuclei, Proc. Natl. Acad. Sci. USA, 96(1999)19–22.CrossRefGoogle Scholar
  17. 17.
    Munro, T.R., The Relative Radiosensitivity of the Nucleus and Cytoplasm of Chinese Hamster Fibroblasts, Radiation Research, 42(1970)451–470.CrossRefGoogle Scholar
  18. 18.
    Puck, T.T., in The Mammalian Cell as a Microorganism (Holden-Day, San Francisco, 1972).Google Scholar
  19. 19.
    Nagasawa, H., Little, J.B., Inkret, W.C., Carpenter, S., Raju, M.R., Chen, D.J. and Striniste, G.F., Response of X-Ray-Sensitive CHO Mutant Cells (xrs-6c) to Radiation, II. Relationship between Cell Survival and the Induction of Chromosomal Damage with Low Doses of α-Particles, Radiat. Res., 126(1991)280–288.CrossRefGoogle Scholar
  20. 20.
    Deshpande, A., Goodwin, E.H., Bailey, S.M., Marrone, B.L. and Lehnert, B.E., Alpha Particle-Induced Sister Chromid Exchange in Normal Human Lung Fibroblasts: Evidence for an Extranuclear Target, Radiat. Res., 145(1996)260–267.CrossRefGoogle Scholar
  21. 21.
    Nagasawa, H. and Little, J.B., Induction of Sister Chromatid Exchanges by Extremely Low Doses of α-Particles, Cancer Research, 52(1992)6394–6396.Google Scholar
  22. 22.
    Wu, L.J., Randers-Pehrson, G., Xu, A., Waldren, C.A., Geard, C.R., Yu, Z.L., and Hei, T.K., Targeted Cytoplasmic Irradiation with Alpha Particles Induces Mutations in Mammalian Cells, Proc. Natl. Acad. Sci. USA, 96(1999)4959–4964.CrossRefGoogle Scholar
  23. 23.
    Narayanan, P.K., Goodwin, E.H. and Lehnert, B.E., Particles Initiate Biological Production of Superoxide Anions and Hydrogen Peroxide in Human Cells, Cancer Research, 57(1997)3963–3971.Google Scholar
  24. 24.
    Roots, R. and Okada, S., Estimation of Life Times and Diffusion Distances of Radicals Involved in X-Ray-Induced DNA Strand Breaks or Killing of Mammalian Cells, Radiat. Res., 64(1975)306–320.CrossRefGoogle Scholar
  25. 25.
    Buettner, G.R. and Jurkiewics, B.A., Ascorbate Free Radical as a Marker of Oxidative Stress: an EPR Study, Free Radicals in Biol. Med., 14(1993)49–55.CrossRefGoogle Scholar
  26. 26.
    Nohl, H. and Hegner, D., Do Mitochondria Produce Oxygen Radicals in vivo? Eur. L. Biochem., 82(1978)563–567.CrossRefGoogle Scholar
  27. 27.
    Chance, B., Sies, H. and Boveris, A., Hydroperoxide Metabolism in Mammalian Organs, Physiol. Rev., 59(1979)527–603.Google Scholar
  28. 28.
    Wei, Y.H., Oxidative Stress and Mitochondrial DNA Mutations in Human Aging, Proc. Soc. Exp. Biol. & Med., 217(1998)53–63.Google Scholar
  29. 29.
    Lenaz, G., Role of Mitochondria in Oxidative Stress and Ageing,. Biochem. Biophys. Acta., 1366(1998)53–67.CrossRefGoogle Scholar
  30. 30.
    Cavalli, L.R. and Liang, B.C., Mutagenesis, Tumorigenicity, and Apoptosis: Are the Mitochondria Involved? Mutation Research, 398(1998)19–26.Google Scholar
  31. 31.
    Nagasawa, H. and Little, J.B., Induction of Sister Chromatid Exchanges by Extremely Low Doses of Alpha Particles, Cancer Res., 52(1992)6394–6396.Google Scholar
  32. 32.
    Zhou, H.L., Suzuki, M., Randers-Pehrson, G., Vannais, D., Chen, G., Trosko, J.E., Waldren, C.A., and Hei, T.K., Radiation Risk to Low Fluences of α-Particles May Be Greater Than We Thought, Proc. Natl. Acad. Sci. USA, 98(2001)14410–14415.CrossRefGoogle Scholar
  33. 33.
    Magee, J. and Chatterjee, A., Radiation Chemistry of Heavy-Particle Tracks, 1. General Considerations J. Phys. Chem., 84(1980)3529–3536.CrossRefGoogle Scholar
  34. 34.
    Shao, C.L., Stewart, V., Folkard, M., Michael, B.D., and Prise, K.M. Nitric Oxide-Mediated Signaling in the Bystander Response of Individually Targeted Glioma Cells, Cancer Res., 63(2003)8437–8442.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Personalised recommendations