Skip to main content

Fast Screening of Single-Nucleotide Polymorphisms Using Chip-Based Temperature Gradient Capillary Electrophoresis

  • Chapter
Frontiers in Biochip Technology
  • 610 Accesses

Abstract

Recently, the analysis of single-nucleotide polymorphisms has attracted much attention. Although many techniques have been reported, new methods with high resolving power, low-cost and fast speed are still in demand. We present a fast SNP detection scheme using chip-based temperature gradient capillary electrophoresis to separate the homoduplex and heteroduplex PCR products which contain one or two SNP sites. The total time of a single run was only 8 minutes.

Joint first authors with equal contributions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, D. G., Fan, J. B., Siao, C. J., et al., Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome, Science, 1998, 280: 1077–1082.

    Article  Google Scholar 

  2. Kristensen, V. N., Kelefiotis, D., Kristensen, T., Borresen-Dale, A., High-throughput methods for detection of genetic variation, Biotechniques, 2001, 30: 318–332.

    Google Scholar 

  3. Cheung, V. G., Spielman, R. S., The genetics of variation in gene expression, Nat. Genet., 2002, 32: 522–525.

    Article  Google Scholar 

  4. Alper, J., Weighing DNA for fast genetic diagnosis, Science, 1998, 279: 2044–2045.

    Article  Google Scholar 

  5. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., Sekiya, T., Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms, Proc. Natl. Acad. Sci. U.S.A., 1989, 86: 2766–2770.

    Article  Google Scholar 

  6. Borresen, A., Hovig, E., Smith-Sorensen, B., Malkin, D., Lystad, S., Andersen, T. I., Nesland, J. M., Isselbacher, K. J., Friend, S. H., Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations, Proc. Natl. Acad. Sci. U.S.A., 1991, 88: 8405–8409.

    Article  Google Scholar 

  7. Fischer, S. G., Lerman, L. S., DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory, Proc. Natl. Acad. Sci. U.S.A., 1983, 80: 1579–1583.

    Article  Google Scholar 

  8. Toliat, M. R., Erdogan, F., Gewies, A., Fahsold, R., Buske, A., Tinschert, S., Nürnberg, P., Analysis of the NF1 gene by temperature gradient gel electrophoresis reveals a high incidence of mutations in exon 4b, Electrophoresis, 2000, 21: 541–544.

    Article  Google Scholar 

  9. Liu, W. G., Smith, D. I., Rechtzigel, K. J., Thibodeau, S. N., James, C. D., Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations, Nucleic Acids Res., 1998, 26: 1396–1400.

    Article  Google Scholar 

  10. Khrapko, K., Hanekamp, J. S., Thilly, W. G., Belenkii, A., Foret, F., Karger, B. L., Constant denaturant capillary electrophoresis (CDCE): a high resolution approach to mutational analysis, Nucleic Acids Res., 1994, 22: 364–369.

    Google Scholar 

  11. Tian, H. J., Brody, L. C., Landers, J. P., Rapid detection of deletion, insertion and substitution mutations via heteroduplex analysis using capillary-and microchipbased electrophoresis, Genome Res., 2000, 10: 1403–1413.

    Article  Google Scholar 

  12. Gelfi, C., Righetti, S. C., Zunino, F., Della Torre, G., Pierotti, M. A., Righetti, P. G., Detection of p53 point mutations by double-gradient, denaturing gradient gel electrophoresis, Electrophoresis, 1997, 18: 2921–2927.

    Article  Google Scholar 

  13. Gao, Q. F., Yeung, E. S., High-throughput detection of unknown mutations by using multiplexed capillary electrophoresis with poly(vinylpyrrolidone) solution, Anal. Chem., 2000, 72: 2499–2506.

    Article  Google Scholar 

  14. Effenhauser, C. S., Bruin, G. J. M., Paulus, A., Integrated chip-based capillary electrophoresis, Electrophoresis, 1997, 18: 2203–2213.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Liu, P., Xing, WL., Liang, D., Huang, GL., Cheng, J. (2006). Fast Screening of Single-Nucleotide Polymorphisms Using Chip-Based Temperature Gradient Capillary Electrophoresis. In: Xing, WL., Cheng, J. (eds) Frontiers in Biochip Technology. Springer, Boston, MA. https://doi.org/10.1007/0-387-25585-0_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-25585-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25568-2

  • Online ISBN: 978-0-387-25585-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics