Skip to main content

Fabrication of Double-Stranded DNA Microarray on Solid Surface for Studying DNA-Protein Interactions

A High-Throughput Platform for Profiling Bimolecular Interaction

  • Chapter
Frontiers in Biochip Technology
  • 611 Accesses

Abstract

This paper presents two novel methods for fabricating double-stranded DNA (dsDNA) microarray. In the first method, the presynthesized single-stranded DNA (ssDNA) oligonucleotides containing two reverse complementary sequences at their 3′ hydroxyl end were firstly immobilize on the surface of the aldehyde-derivatized glass slides by their 5′ end, and then the two reverse complementary sequences were annealed to form a short dsDNA hairpin structure which provided the primer for later polymerase elongation. Finally, the ssDNA microarrays were converted into the unimolecular dsDNA microarrays by an on-chip polymerase reaction. In the second method, the two kinds of ssDNA oligonucleotides named constant oligonucleotide (CO) and target oligonucleotides (TOs) were synthesized. Then the different TOs harboring the DNA-binding sites were respectively annealed and ligated with the same CO containing an internal aminated dT in tubes. The reaction products were immobilized on the surface of the aldehyde-derivatized glass slides by the aminated dT to fabricate the partial-dsDNA microarrays. Finally, the partial-dsDNA microarrays were converted into the unimolecular dsDNA microarrays by an on-chip polymerase reaction. The excellent efficiency and high accuracy of the enzymatic synthesis in two methods were demonstrated by incorporation of fluorescently labeled dUTPs in Klenow extension and the digestion of dsDNA microarrays with restriction endonuclease. The accessibility and specificity of the DNA-binding proteins binding to dsDNA microarrays were verified by binding Cy3 labeled NF-κB (p50) to dsDNA microarrays. Therefore, the dsDNA microarray containing 66 probes representing 30 all-possible single-nucleotide mutant NF-κB binding targets of Ig-κB and 36 wild-type NF-κB binding targets were fabricated to determine the binding affinities of NF-κB homodimer p50 to all probes on chip. We found the binding results were very consistent with that from x-ray crystallography studies and gel mobility-shift analysis. The unimolecular dsDNA microarray has great potentials to provide a high-throughput platform for investigating the sequence-specific DNA-protein interactions involved in gene expression regulation, restriction and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pabo, C.O. and Sauer, R.T. (1992) Annu. Rev. Biochem., 61, 1053–1095.

    Article  Google Scholar 

  2. Craig, N.L. (1988) Annu. Rev. Genet., 22, 77–105.

    Article  Google Scholar 

  3. Pingoud, A. and Jeltsch, A. (1997) Eur. J. Biochem., 246, 1–22.

    Article  Google Scholar 

  4. Margulies, C. and Kaguni, J.M. (1996) J. Biol. Chem., 271, 17035–17040.

    Article  Google Scholar 

  5. Brazil, M. (2002) Nature 1, 9.

    Google Scholar 

  6. Chaires, J.B. (1998) Current Opinion in structural biology 8, 314–320

    Article  Google Scholar 

  7. Woodbury, C.P. & Hippel, P. H.V. (1983) Biochem. 22, 4730–4737.

    Article  Google Scholar 

  8. Jansen, C., Gronenborn, A.M. & Clore, G.M. (1987) Biochem. J., 246, 227–232.

    Google Scholar 

  9. Ruscher, K., Reuter, M., Kupper, D., Trendelenburg, G., Dirnagl, U., Meisel, A. (2000) J. Biotech., 78, 163–170.

    Article  Google Scholar 

  10. Bowen, B., Steinberg, J., Laemmli, U.K. and Weintraub, H. (1980) Nucleic Acids Res., 8, 1–20.

    Google Scholar 

  11. Miskimins, W.K., Roberts, M.P., McClelland, A. and Ruddle, F.H. (1985) Proc. Natl. Acad. Sci. USA, 82, 6741–6744.

    Article  Google Scholar 

  12. Choo, Y. and Klug, A. (1993) Nucleic Acids Res., 21, 3341–3346.

    Google Scholar 

  13. Hanes, S.D. and Brent, R. (1991) Science 251, 426–430.

    Google Scholar 

  14. V. Olando. (2000) Trands Biochem. Sci., 25, 99–104.

    Article  Google Scholar 

  15. Rebar, E.J. and Pabo, C. O. (1994) Sci., 263, 671–673.

    Google Scholar 

  16. Choo, Y. and Klug, A. (1993) Proc. Natl. Acad. Sci. USA 91, 11168–11172.

    Article  Google Scholar 

  17. Oliphant, A., Brendl, C. and Struhl, K. (1989) Mol. Cell Biol. 9, 2944–2949.

    Google Scholar 

  18. Escolano, A.L.G.R., Medina, F., Racaniello, V. R., and Angel, R. M. D. (1997) Virol. 227, 505–508.

    Article  Google Scholar 

  19. Bilanges, B., Varrault, A., Basyuk, E., Rodriguez, C., Mazumdar, A., Pantaloni, C., Bockaert, J., Theillet, C., Spengler, D., Journot, L. (1999) Oncogene 18, 3979–3988,.

    Article  Google Scholar 

  20. Müller, C. W., Rey, F. A., Sodeoka, M., Verdine, G. L. & Harrison, S. C. (1995) Nature 373, 311–317.

    Article  Google Scholar 

  21. Ghosh, G., vanDuyne, G., Ghosh, S. & Sigler, P.B. (1995) Nature 373, 303–310.

    Article  Google Scholar 

  22. Dougherty, G. & Pigram, W. J. (1982) CRC Crit. Rev. Biochem. 12, 103–132.

    Google Scholar 

  23. Zimmer, C. & Luck, G. (1992) In Hurley, L. H. (ed.), Advances in DNA Sequence Specific Agents. JAI Press Inc., London, UK, Vol. 1, pp. 51–88.

    Google Scholar 

  24. Searle, M.S. (1993) Prog. NMR Spectrosc. 25, 403–480.

    Article  Google Scholar 

  25. Chaires, J.B. (1992) In Hurley, L. H. (ed.), Advances in DNA Sequence Specific Agents. JAI Press Inc., London, UK, Vol. 1, pp. 3–23.

    Google Scholar 

  26. Imad I. Hamdan, Graham G. Skellern and Roger D. Waigh. (1998) Nucleic Acids Res., 26, 3053–3058.

    Article  Google Scholar 

  27. Coury, J. E., McFail-lsom, L., Williams, L.D., & Bottomley, L. A. (1996) Proc. Natl. Acad. Sci. USA, 93, 12283–12286.

    Article  Google Scholar 

  28. Coury, J. E., Anderson, J. R., McFail-lsom, L., Williams, L. D. & Bottomley, L. A. (1997) J. Am. Chem. Soc. 119, 3792–3796.

    Article  Google Scholar 

  29. Joseph E. Coury, Lori Mcfail-Isom, Loren Dean Williams, and Lawrence A. Bottomley. (1996) Proc. Natl. Acad. Sci. USA 93, 12283–12286.

    Article  Google Scholar 

  30. Torunn Berge, Nigel S. Jenkins, Richard B. Hopkirk, Michael J. Waring, J. Michael Edwardson, Robert M. Henderson. (2002) Accepted for publication in ‘Nucleic Acids Research’, 15 May, 2002.

    Google Scholar 

  31. Gambari R, Feriotto G, Rutigliano C, Bianchi N, Mischiati C (2000) J. Pharmacol. Exp. Ther. 294, 370–377.

    Google Scholar 

  32. Passadore M, Feriotto G, Bianchi N, Aguiari G, Mischiati C, Piva R, Gambari R. (1994) J. Biochem. Biophys. Methods 29, 307–19.

    Article  Google Scholar 

  33. M Broggini, M Ponti, S Ottolenghi, M D’Incalci, N Mongelli and R Mantovani. Nucleic Acids Res. 17, 1051–1059.

    Google Scholar 

  34. Bulyk, M. L., Gentalen, E., Lockhart, D. J. & Church, G. M. (1999) Nat. Biotechnol., 17, 573–577.

    Article  Google Scholar 

  35. Drobyshev, A.L., Zasedatelev, A.S., Yershov, G.M. & Mirzabekov, A. D. (1999) Nucleic Acids Res., 27, 4100–4105.

    Article  Google Scholar 

  36. Krylov, A. S., Zasedateleva, O. A., Prokopenko, D. V., Rouviere-Yaniv, J. & Mirzabekov, A. D. (2001) Nucleic Acids Res., 29, 2654–2660.

    Article  Google Scholar 

  37. Nordhoff, E., Krogsdam, A.M., Jorgensen, H.F., Kallipolitis, B.H., Clark, B.F.C., Roepstorff, P. & Kristiansen, K. (1999) Nat. Biotechnol., 17, 884–888.

    Article  Google Scholar 

  38. Bulyk, M. L., Huang X, Choo Y. & Church, G. M. (2001) Proc. Natl. Acad. Sci. USA 98, 7158–7163.

    Article  Google Scholar 

  39. Bulyk, M. L., Johnson, P. L. F. & Church, G. M. (2002) Nucleic Acids Res., 30, 1255–1261.

    Article  Google Scholar 

  40. Kadonaga, J.T. & Tjian, R. (1986) Proc. Natl. Acad. Sci. USA 83, 5889–5893.

    Article  Google Scholar 

  41. Kadonaga, J.T. (1991) Methods Enzymol. 208, 10–23.

    Article  Google Scholar 

  42. Lochart, D.J., Vetter, D. & Diggelmann, M. US patent # 5556752, issue date 9/17/96

    Google Scholar 

  43. Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. Nature 391, 775–778 (1998).

    Article  Google Scholar 

  44. McGall, G.H., Barone, A.D., Diggelmann, M., Fodor, S.P.A., Gentelen, E. & Ngo. N. (1997) J. Am. Chem. Soc. 119, 5081–5090.

    Article  Google Scholar 

  45. Southern, E.M. et al. (1999) Nat. Genet. (Suppl.) 21, 5–9.

    Article  Google Scholar 

  46. Carlson, R. & Brent, R. (1999) Nat. Biotech. 17, 536–537.

    Article  Google Scholar 

  47. Kwiatkowski, M., Fredriksson, S., Isaksson, A., Nilsson, M. & Landegren, U. (1999) Nucleic Acids Res. 27, 4710–4714.

    Article  Google Scholar 

  48. Craig, N.L. (1988) Annu. Rev. Genet., 22, 77–105.

    Article  Google Scholar 

  49. Pingoud, A. and Jeltsch, A. (1997) Eur. J. Biochem., 246, 1–22.

    Article  Google Scholar 

  50. Margulies, C. & Kaguni, J.M. (1996) J. Biol. Chem., 271, 17035–17040.

    Article  Google Scholar 

  51. Jansen, C., Gronenborn, A.M. & Clore, G.M. (1987) Biochem. J., 246, 227–232.

    Google Scholar 

  52. Bowen, B., Steinberg, J., Laemmli, U.K. & Weintraub, H. (1980) Nucleic Acids Res. 8, 1–20.

    Google Scholar 

  53. Hanes, S.D. & Brent, R. (1991) Sci., 251, 426–430.

    Google Scholar 

  54. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. (1995) Sci., 270, 467–470.

    Google Scholar 

  55. DeRisi, J. L., Iyer, V. R. & Brown, P. O. Science 278, 680–686 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Wang, J., Lu, Z. (2006). Fabrication of Double-Stranded DNA Microarray on Solid Surface for Studying DNA-Protein Interactions. In: Xing, WL., Cheng, J. (eds) Frontiers in Biochip Technology. Springer, Boston, MA. https://doi.org/10.1007/0-387-25585-0_16

Download citation

  • DOI: https://doi.org/10.1007/0-387-25585-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25568-2

  • Online ISBN: 978-0-387-25585-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics