Skip to main content

The Neuron and Axon in Experimental Autoimmune Encephalomyelitis

  • Chapter
Experimental Models of Multiple Sclerosis

Abstract

Neuronal and axonal loss and damage are increasingly recognized major pathological features of MS that correlate with disability. Correspondingly, in EAE, these processes are being investigated in great detail. This chapters discusses the present knowledge of axonal and neuronal pathology in MS and details the relevant studies in EAE, that may form the basis to future neuroprotective/regenerative approaches to MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kornek, B. and H. Lassmann, Axonal pathology in multiple sclerosis. A historical note. Brain Pathol, 1999: p. 651–6.

    Google Scholar 

  2. Grossman, R.I., Magnetization transfer in multiple sclerosis. Ann Neurol, 1994. 36 (suppl): p. S97–9.

    Article  PubMed  Google Scholar 

  3. Gass, A., G.J. Barker, D. Kidd, J.W. Thorpe, D. MacManus, A. Brennan, P.S. Tofts, AJ. Thompson, W.I. McDonald, and D.H. Miller, Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann Neurol, 1994. 36: p. 62–7.

    Article  PubMed  CAS  Google Scholar 

  4. Bruck, W., A. Bitsch, H. Kolenda, Y. Bruck, M. Stiefel, and H. Lassmann, Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol, 1997. 42: p. 783–93.

    Article  PubMed  CAS  Google Scholar 

  5. van Walderveen, M.A., W. Kamphorst, P. Scheltens, J.H. van Waesberghe, R. Ravid, J. Valk, C.H. Polman, and F. Barkhof, Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology, 1998. 50: p. 1282–8.

    PubMed  Google Scholar 

  6. Arnold, D.L., P.M. Matthews, G.S. Francis, J. O’Connor, and J.P. Antel, Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol, 1992. 31: p. 235–41.

    Article  PubMed  CAS  Google Scholar 

  7. Fu, L., P.M. Matthews, N. De Stefano, K.J. Worsley, S. Narayanan, G.S. Francis, J.P. Antel, C. Wolfson, and D.L. Arnold, Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain, 1998. 121: p. 103–13.

    Article  PubMed  Google Scholar 

  8. Arnold, D.L., P.M. Matthews, G. Francis, and J. Antel, Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med, 1990: p. 154–9.

    Google Scholar 

  9. Matthews, P.M., G. Francis, J. Antel, and D.L. Arnold, Proton magnetic resonance spectroscopy for metabolic characterization of plaques in multiple sclerosis. Neurology, 1991. 41: p. 1251–6.

    PubMed  CAS  Google Scholar 

  10. Davie, C.A., C.P. Hawkins, G.J. Barker, A. Brennan, P.S. Tofts, D.H. Miller, and W.I. McDonald, Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain, 1994. 117: p. 49–58.

    Article  PubMed  Google Scholar 

  11. Ferguson, B., M.K. Matyszak, M.M. Esiri, and V.H. Perry, Axonal damage in acute multiple sclerosis lesions. Brain, 1997. 120: p. 393–9.

    Article  PubMed  Google Scholar 

  12. Trapp, B.D., J. Peterson, R.M. Ransohoff, R. Rudick, S. Mork, and L. Bo, Axonal transection in the lesions of multiple sclerosis. N Engl J Med, 1998. 338: p. 278–85.

    Article  PubMed  CAS  Google Scholar 

  13. Mews, I., M. Bergmann, S. Bunkowski, F. Gullotta, and W. Bruck, Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Mult Scler, 1998. 4: p. 55–62.

    PubMed  CAS  Google Scholar 

  14. Losseff, N.A., S.L. Webb, J.I. O’Riordan, R. Page, L. Wang, G.J. Barker, P.S. Tofts, W.I. McDonald, D.H. Miller, and A.J. Thompson, Brain 1996 Jun;119 ( Pt 3):701–8. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain, 1996. 119: p. 701–8.

    Article  PubMed  Google Scholar 

  15. Simmons, M.L., C.G. Frondoza, and J.T. Coyle, Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience, 1991. 45: p. 37–45.

    Article  PubMed  CAS  Google Scholar 

  16. Bjartmar, C., J. Battistuta, N. Terada, E. Dupree, and B.D. Trapp, N-acetylaspartate is an axon-specific marker of mature white matter in vivo: a biochemical and immunohistochemical study on the rat optic nerve. Ann Neurol, 2002. 51: p. 51–8.

    Article  PubMed  CAS  Google Scholar 

  17. De Stefano, N., P.M. Matthews, J.P. Antel, M. Preul, G. Francis, and D.L. Arnold, Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol, 1995. 38: p. 901–9.

    Article  PubMed  Google Scholar 

  18. Van Hecke, P., G. Marchal, K. Johannik, P. Demaerel, G. Wilms, H. Carton, and A.L. Baert, Human brain proton localized NMR spectroscopy in multiple sclerosis. Magn Reson Med, 1991. 18: p. 199–206.

    Article  PubMed  Google Scholar 

  19. Husted, C.A., D.S. Goodin, J.W. Hugg, A.A. Maudsley, J.S. Tsuruda, S.H. de Bie, G. Fein, G.B. Matson, and M.W. Weiner, Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol, 1994. 36: p. 157–65.

    Article  PubMed  CAS  Google Scholar 

  20. Matthews, P.M., E. Pioro, S. Narayanan, N. De Stefano, L. Fu, G. Francis, J. Antel, C. Wolfson, and D.L. Arnold, Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain, 1996. 119: p. 715–22.

    Article  PubMed  Google Scholar 

  21. Evangelou, N., M.M. Esiri, S. Smith, J. Palace, and P.M. Matthews, Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol, 2000. 47: p. 391–5.

    Article  PubMed  CAS  Google Scholar 

  22. Grimaud, J., G.J. Barker, L. Wang, M. Lai, D.G. MacManus, S.L. Webb, A.J. Thompson, W.I. McDonald, P.S. Tofts, and D.H. Miller, Correlation of magnetic resonance imaging parameters with clinical disability in multiple sclerosis: a preliminary study. J Neurol, 1999. 246: p. 961–7.

    Article  PubMed  CAS  Google Scholar 

  23. Fisher, E., R.A. Rudick, G. Cutter, M. Baier, D. Miller, B. Weinstock-Guttman, M.K. Mass, D.S. Dougherty, and N.A. Simonian, Relationship between brain atrophy and disability: an 8-year follow-up study of multiple sclerosis patients. Mult Scler, 2000. 6: p. 373–7.

    PubMed  CAS  Google Scholar 

  24. Davie, C.A., G.J. Barker, A.J. Thompson, P.S. Tofts, W.I. McDonald, and D.H. Miller, 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry, 1997. 63: p. 736–42.

    Article  PubMed  CAS  Google Scholar 

  25. Peterson, J.W., L. Bo, S. Mork, A. Chang, and B.D. Trapp, Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol, 2001. 50: p. 389–400.

    Article  PubMed  CAS  Google Scholar 

  26. Guy, J., E.A. Ellis, E.F.r. Tark, G.M. Hope, and N.A. Rao, Axonal transport reductions in acute experimental allergic encephalomyelitis: qualitative analysis of the optic nerve. Curr Eye Res, 1989. 8: p. 261–9.

    Article  PubMed  CAS  Google Scholar 

  27. Dousset, V., R.I. Grossman, K.N. Ramer, M.D. Schnall, L.H. Young, F. Gonzalez-Scarano, E. Lavi, and J.A. Cohen, Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology, 1992. 182: p. 483–91.

    PubMed  CAS  Google Scholar 

  28. Tabira, T. and K. Sakai, Demyelination induced by T cell lines and clones specific for myelin basic protein in mice. Lab Invest, 1987. 56: p. 518–25.

    PubMed  CAS  Google Scholar 

  29. Raine, C.S. and A.H. Cross, Axonal dystrophy as a consequence of long-term demyelination. Lab Invest, 1989. 60: p. 714–25.

    PubMed  CAS  Google Scholar 

  30. Storch, M.K., A. Stefferl, U. Brehm, R. Weissert, E, Wallstrom, M. Kerschensteiner, T. Olsson, C. Linington, and H. Lassmann, Brain Pathol 1998 Oct;8(4):681–94 Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol, 1998. 8: p. 681–94.

    Article  PubMed  CAS  Google Scholar 

  31. Kornek, B., M.K. Storch, R. Weissert, E. Wallstroem, A. Stefferl, T. Olsson, C. Linington, M. Schmidbauer, and H. Lassmann, Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol, 2000. 157: p. 267–76.

    PubMed  CAS  Google Scholar 

  32. McGavern, D.B., L. Zoecklein, S. Sathornsumetee, and M. Rodriguez, Assessment of hindlimb gait as a powerful indicator of axonal loss in a murine model of progressive CNS demyelination. Brain Res, 2000. 877: p. 396–400.

    Article  PubMed  CAS  Google Scholar 

  33. Mancardi, G., B. Hart, L. Roccatagliata, H. Brok, D. Giunti, R. Bontrop, L. Massacesi, E. Capello, and A. Uccelli, Demyelination and axonal damage in a non-human primate model of multiple sclerosis. J Neurol Sci, 2001. 184(1): p. 41–9.

    Article  PubMed  CAS  Google Scholar 

  34. Yu, M., A. Nishiyama, B.D. Trapp, and V.K. Tuohy, Interferon-beta inhibits progression of relapsing-remitting experimental autoimmune encephalomyelitis. J Neuroimmunol, 1996. 64(1): p. 91–100.

    Article  PubMed  CAS  Google Scholar 

  35. Wujek, J.R., C. Bjartmar, E. Richer, R.M. Ransohoff, M. Yu, V.K. Tuohy, and B.D. Trapp, Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J Neuropathol Exp Neurol, 2002. 61(1): p. 23–32.

    PubMed  Google Scholar 

  36. Newman, T.A., S.T. Woolley, P.M. Hughes, N.R. Sibson, D.C. Anthony, and V.H. Perry, T-cell-and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases. Brain, 2001. 124(Pt 11): p. 2203–14.

    Article  PubMed  CAS  Google Scholar 

  37. Ganter, P., C. Prince, and M.M. Esiri, Spinal cord axonal loss in multiple sclerosis: a post-mortem study. Neuropathol Appl Neurobiol, 1999. 25(6): p. 459–67.

    Article  PubMed  CAS  Google Scholar 

  38. Lovas, G., N. Szilagyi, K. Majtenyi, M. Palkovits, and S. Komoly, Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain, 2000. 123( Pt 2): p. 308–17.

    Article  PubMed  Google Scholar 

  39. Evangelou, N., D. Konz, M.M. Esiri, S. Smith, J. Palace, and P.M. Matthews, Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain, 2001. 124(Pt 9): p. 1813–20.

    Article  PubMed  CAS  Google Scholar 

  40. Vyas, D., D. Bieger, and S.R. White, Intraspinal nerve terminals immunoreactive for tyrosine hydroxylase, serotonin and substance P in guinea-pigs with acute experimental allergic encephalomyelitis. Neuroscience, 1988. 26(1): p. 253–9.

    Article  PubMed  CAS  Google Scholar 

  41. White, S.R., D. Vyas, and D. Bieger, Serotonin immunoreactivity in spinal cord axons and terminals of rodents with experimental allergic encephalomyelitis. Neuroscience, 1985. 16(3): p. 701–9.

    Article  PubMed  CAS  Google Scholar 

  42. Stanley, G.P. and M.P. Pender, The pathophysiology of chronic relapsing experimental allergic encephalomyelitis in the Lewis rat. Brain, 1991. 114: p. 1827–53.

    Article  PubMed  Google Scholar 

  43. Black, J.A., S. Dib-Hajj, D. Baker, J. Newcombe, M.L. Cuzner, and S.G. Waxman, Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proc Natl Acad Sci U S A, 2000. 97(21): p. 11598–602.

    Article  PubMed  CAS  Google Scholar 

  44. Kornek, B., M.K. Storch, J. Bauer, A. Djamshidian, R. Weissert, E. Wallstroem, A. Stefferl, F. Zimprich, T. Olsson, C. Linington, M. Schmidbauer, and H. Lassmann, Distribution of a calcium channel subunit in dystrophic axons in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain, 2001. 124(Pt 6): p. 1114–24.

    Article  PubMed  CAS  Google Scholar 

  45. Schaecher, K.E., D.C. Shields, and N.L. Banik, Mechanism of myelin breakdown in experimental demyelination: a putative role for calpain. Neurochem Res, 2001. 26(6): p. 731–7.

    Article  PubMed  CAS  Google Scholar 

  46. Huseby, E.S., D. Liggitt, T. Brabb, B. Schnabel, C. Ohlen, and J. Goverman, A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med, 2001. 194(5): p. 669–76.

    Article  PubMed  CAS  Google Scholar 

  47. Medana, I., Z. Li, A. Flugel, J. Tschopp, H. Wekerle, and H. Neumann, Fas ligand (CD95L) protects neurons against perforin-mediated T lymphocyte cytotoxicity. J Immunol, 2001. 167(2): p. 674–81.

    PubMed  CAS  Google Scholar 

  48. Bo, L., T.M. Dawson, S. Wesselingh, S. Mork, S. Choi, P.A. Kong, D. Hanley, and B.D. Trapp, Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol, 1994. 36(5): p. 778–86.

    Article  PubMed  CAS  Google Scholar 

  49. Koprowski, H., Y.M. Zheng, E. Heber-Katz, N. Fraser, L. Rorke, Z.F. Fu, C. Hanlon, and B. Dietzschold, In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci U S A, 1993. 90(7): p. 3024–7.

    Article  PubMed  CAS  Google Scholar 

  50. Smith, K.J., R. Kapoor, S.M. Hall, and M. Davies, Electrically active axons degenerate when exposed to nitric oxide. Ann Neurol, 2001. 49(4): p. 470–6.

    Article  PubMed  CAS  Google Scholar 

  51. Ahmed, Z., D. Gveric, G. Pryce, D. Baker, J.P. Leonard, M.L. Cuzner, and L.T. Diemel, Myelin/axonal pathology in interleukin-12 induced serial relapses of experimental allergic encephalomyelitis in the Lewis rat. Am J Pathol, 2001. 158(6): p. 2127–38.

    PubMed  CAS  Google Scholar 

  52. Pitt, D., P. Werner, and C.S. Raine, Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med, 2000. 6(1): p. 67–70.

    Article  PubMed  CAS  Google Scholar 

  53. Giess, R., M. Maurer, R. Linker, R. Gold, M. Warmuth-Metz, K.V. Toyka, M. Sendtner, and P. Rieckmann, Association of a null mutation in the CNTF gene with early onset of multiple sclerosis. Arch Neurol, 2002. 59(3): p. 407–9.

    Article  PubMed  Google Scholar 

  54. Linker, R.A., M. Maurer, S. Gaupp, R. Martini, B. Holtmann, R. Giess, P. Rieckmann, H. Lassmann, K.V. Toyka, M. Sendtner, and R. Gold, CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med, 2002. 8(6): p. 620–4.

    Article  PubMed  CAS  Google Scholar 

  55. Ruffini, F., R. Furlan, P.L. Poliani, E. Brambilla, P.C. Marconi, A. Bergami, G. Desina, J.C. Glorioso, G. Comi, and G. Martino, Fibroblast growth factor-II gene therapy reverts the clinical course and the pathological signs of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice. Gene Ther, 2001. 8(16): p. 1207–13.

    Article  PubMed  CAS  Google Scholar 

  56. White, S.R., P.C. Black, G.K. Samathanam, and K.C. Paros, Prazosin suppresses development of axonal damage in rats inoculated for experimental allergic encephalomyelitis. J Neuroimmunol, 1992. 39(3): p. 211–8.

    Article  PubMed  CAS  Google Scholar 

  57. Broberg, E., N. Setala, M. Roytta, A. Salmi, J.P. Eralinna, B. He, B. Roizman, and V. Hukkanen, Expression of interleukin-4 but not of interleukin-10 from a replicative herpes simplex virus type 1 viral vector precludes experimental allergic encephalomyelitis. Gene Ther, 2001. 8(10): p. 769–77.

    Article  PubMed  CAS  Google Scholar 

  58. Wallstrom, E., P. Diener, A. Ljungdahl, M. Khademi, C.G. Nilsson, and T. Olsson, Memantine abrogates neurological deficits, but not CNS inflammation, in Lewis rat experimental autoimmune encephalomyelitis. J Neurol Sci, 1996. 137(2): p. 89–96.

    Article  PubMed  CAS  Google Scholar 

  59. Paul, C. and C. Bolton, Modulation of blood-brain barrier dysfunction and neurological deficits during acute experimental allergic encephalomyelitis by the N-methyl-D-aspartate receptor antagonist memantine. J Pharmacol Exp Ther, 2002. 302(1): p. 50–7.

    Article  PubMed  CAS  Google Scholar 

  60. Sommer, N., P.A. Loschmann, G.H. Northoff, M. Weller, A. Steinbrecher, J.P. Steinbach, R. Lichtenfels, R. Meyermann, A. Riethmuller, A. Fontana, and et al., The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nat Med, 1995. 1(3): p. 244–8.

    Article  PubMed  CAS  Google Scholar 

  61. Myers, L.W., G.W. Ellison, J.E. Merrill, A. El Hajjar, B. St Pierre, M. Hijazin, B.D. Leake, J.R. Bentson, M.R. Nuwer, W.W. Tourtellotte, P. Davis, D. Granger, and J.L. Fahey, Pentoxifylline is not a promising treatment for multiple sclerosis in progression phase. Neurology, 1998. 51(5): p. 1483–6.

    PubMed  CAS  Google Scholar 

  62. Baker, D., G. Pryce, J.L. Croxford, P. Brown, R.G. Pertwee, J.W. Huffman, and L. Layward, Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature, 2000. 404(6773): p. 84–7.

    Article  PubMed  CAS  Google Scholar 

  63. Hillard, C.J., S. Muthian, and C.S. Kearn, Effects of CB(1) cannabinoid receptor activation on cerebellar granule cell nitric oxide synthase activity. FEBS Lett, 1999. 459(2): p. 277–81.

    Article  PubMed  CAS  Google Scholar 

  64. Baker, D., G. Pryce, G. Giovannoni, and A.J. Thompson, The therapeutic potential of cannabis. Lancet Neurol, 2003. 2: p. 291–298.

    Article  PubMed  CAS  Google Scholar 

  65. Kipnis, J., E. Yoles, H. Schori, E. Hauben, I. Shaked, and M. Schwartz, Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J Neurosci, 2001. 21(13): p. 4564–71.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Evangelou, N., Constantinescu, C.S. (2005). The Neuron and Axon in Experimental Autoimmune Encephalomyelitis. In: Lavi, E., Constantinescu, C.S. (eds) Experimental Models of Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/0-387-25518-4_8

Download citation

Publish with us

Policies and ethics