Skip to main content

The Role of Astrocytes in Autoimmune Disease of the Central Nervous System

  • Chapter
Experimental Models of Multiple Sclerosis
  • 2216 Accesses

Abstract

Astrocytes are the most abundant glial cell population in the central nervous system (CNS). In the healthy brain and spinal cord, the major function of astrocytes includes the formation and maintenance of the blood brain barrier (BBB), and the supply of structural support and nourishment to neurons. This article will discuss the role of astrocytes in multiple sclerosis (MS) and other inflammatory autoimmune diseases of the CNS. We will address the capacity of astrocytes to serve as immunocompetent cells, their role in major histocompatibility complex (MHC) class II restricted antigen (Ag) presentation, and their ability to express costimulatory molecules. We will also discuss astrocytes as the major CNS producers of several chemokines and cytokines, and their relevance to neurological disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin, R., H. F. McFarland, and D. E. McFarlin. 1992. Immunological aspects of demyelinating diseases. Annu. Rev. Immunol. 10:153–187.

    Article  PubMed  CAS  Google Scholar 

  2. Steinman, L. 1996. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85:299–302.

    Article  PubMed  CAS  Google Scholar 

  3. Stuve, O. and S. S. Zamvil. 2001. Neurologic diseases. In Medical Immunology. T. G. Parslow, D. P. Stites, A. I. Terr, and J. B. Imboden, eds. McGraw Hill, San Francisco, pp. 510–526.

    Google Scholar 

  4. Anderson, D. W., J. H. Ellenberg, C. M. Leventhal, S. C. Reingold, M. Rodriguez, and D. H. Silberberg. 1992. Revised estimate of the prevalence of multiple sclerosis in the United States, Ann. Neurol. 31:333–336.

    Article  PubMed  CAS  Google Scholar 

  5. Koopmans, R. A., D. K. Li, J. J. Oger, J. Mayo, and D. W. Paty. 1989. The lesion of multiple sclerosis: imaging of acute and chronic stages. Neurology 39:959–963.

    PubMed  CAS  Google Scholar 

  6. Stone, L. A., P. S. Albert, M. E. Smith, C. DeCarli, M. R. Armstrong, D. E. McFarlin, J. A. Frank, and H. F. McFarland. 1995. Changes in the amount of diseased white matter over time in patients with relapsing-remitting multiple sclerosis. Neurology 45:1808–1814.

    PubMed  CAS  Google Scholar 

  7. Paty, D. W. and H. McFarland. 1998. Magnetic resonance techniques to monitor the long term evolution of multiple sclerosis pathology and to monitor definitive clinical trials. J.Neurol.Neurosurg.Psychiatry 64Suppl 1:S47–S51.

    PubMed  Google Scholar 

  8. Steinman, L. 2001. Multiple sclerosis: a two-stage disease. Nat.Immunol. 2:762–764.

    Article  PubMed  CAS  Google Scholar 

  9. Mi, H., H. Haeberle, and B. A. Barres. Induction of astrocyte differentiation by endothelial cells. 2001. J Neuwsci 21:1538–1547.

    CAS  Google Scholar 

  10. Wolburg, H. and W. Rissau. 1995. Formation of the blood brain barrier. In Neuroglia. B. R. Ransom, and Kettenmann, H, eds. Oxford University Press, New York, pp. 763–776.

    Google Scholar 

  11. Traugott, U., L. C. Scheinberg, and C. S. Raine. 1985. On the presence of la-positive endothelial cells and astrocytes in multiple sclerosis lesions and its relevance to antigen presentation. J. Neuwimmunol. 8:1–14.

    Article  CAS  Google Scholar 

  12. Sakai, K., T. Tabira, M. Endoh, and L. Steinman. 1986. Ia expression in chronic relapsing experimental allergic encephalomyelitis induced by long-term cultured T cell lines in mice. Lab Invest 54:345–352.

    PubMed  CAS  Google Scholar 

  13. Traugott, U. 1989. Detailed analysis of early immunopathologic events during lesion formation in acute experimental autoimmune encephalomyelitis. Cell Immunol. 119:114–129.

    Article  PubMed  CAS  Google Scholar 

  14. Krogsgaard, M., K. W. Wucherpfennig, B. Canella, B. E. Hansen, A. Svejgaard, J. Pyrdol, H. Ditzel, C. Raine, J. Engberg, and L. Fugger. 2000. Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J. Exp. Med. 191:1395–1412.

    Article  PubMed  CAS  Google Scholar 

  15. Benveniste, E. N., Shrikant, P., Patton, H. K., and Benos, D. J. Neuroimmunologic mechanisms for disease in AIDS: The role of the astrocyte. Gendelman, H. E., Lipton, S. A., Epstein, L., and Swindells, S. 130–146. 2002. New York, Chapman & Hall. The neurology of AIDS. Ref Type: Serial (Book, Monograph)

    Google Scholar 

  16. Abnet, K., J. W. Fawcett, and S. B. Dunnett. 1991. Interactions between meningeal cells and astrocytes in vivo and in vitro. Brain Res. Dev. Brain Res. 59:187–196.

    Article  PubMed  CAS  Google Scholar 

  17. Eng, L. F., P. J. Reier, and J. D. Houle. 1987. Astrocyte activation and fibrous gliosis: glial fibrillary acidic protein immunostaining of astrocytes following intraspinal cord grafting of fetal CNS tissue. Prog. Brain Res. 71:439–455.

    PubMed  CAS  Google Scholar 

  18. Dusart, I., S. Marty, and M. Peschanski. 1991. Glial changes following an excitotoxic lesion in the CNS—II. Astrocytes. Neuroscience 45:541–549.

    Article  PubMed  CAS  Google Scholar 

  19. Eddleston, M. and L. Mucke. 1993. Molecular profile of reactive astrocytes— implications for their role in neurologic disease. Neuroscience 54:15–36.

    Article  PubMed  CAS  Google Scholar 

  20. Merrill, J. E. and E. N. Benveniste. 1996. Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci. 19:331–338.

    Article  PubMed  CAS  Google Scholar 

  21. Norton, W. T., D. A. Aquino, I. Hozumi, F. C. Chiu, and C. F. Brosnan. 1992. Quantitative aspects of reactive gliosis: a review. Neurochem.Res. 17:877–885.

    Article  PubMed  CAS  Google Scholar 

  22. Ridet, J. L., S. K. Malhotra, A. Privat, and F. H. Gage. 1997. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20:570–577.

    Article  PubMed  CAS  Google Scholar 

  23. Wu, V. W. and J. P. Schwartz. 1998. Cell culture models for reactive gliosis: new perspectives. J. Neurosci. Res. 51:675–681.

    Article  PubMed  CAS  Google Scholar 

  24. Zamvil, S. S. and L. Steinman. 1990. The T lymphocyte in experimental allergic encephalomyelitis. Anna. Rev. Immunol. 8:579–621.

    Article  CAS  Google Scholar 

  25. Wekerle, H., C. Linington, H. Lassmann, and R. Meyermann. 1986. Cellular immune reactivity within the CNS. Trends Neurosci. 9:271–277.

    Article  Google Scholar 

  26. Hickey, W. F., B. L. Hsu, and H. Kimura. 1991. T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28:254–260.

    Article  PubMed  CAS  Google Scholar 

  27. Slavin, A. J., J. M. Soos, O. Stuve, J. C. Patarroyo, H. L. Weiner, A. Fontana, E. K. Bikoff, and S. S. Zamvil. 2001. Requirement for endocytic antigen processing and influence of invariant chain and H-2M deficiencies in CNS autoimmunity. J. Clin. Invest 108:1133–1139.

    Article  PubMed  CAS  Google Scholar 

  28. Tompkins, S. M., J. Padilla, M. C. Dal Canto, J. P. Ting, L. Van Kaer, and S. D. Miller. 2002. De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J. Immunol. 168:4173–4183

    PubMed  CAS  Google Scholar 

  29. Shrikant, P. and E. N. Benveniste. 1996. The central nervous system as an immunocompetent organ: role of glial cells in antigen presentation. J. Immunol. 157:1819–1822.

    PubMed  CAS  Google Scholar 

  30. Sedgwick, J. D., R. Mossner, S. Schwender, and M. ter, V. 1991. Major histocompatibility complex-expressing nonhematopoietic astroglial cells prime only CD8+ T lymphocytes: astroglial cells as perpetuators but not initiators of CD4+ T cell responses in the central nervous system. J. Exp. Med. 173:1235–1246.

    Article  PubMed  CAS  Google Scholar 

  31. Williams, K., Jr., E. Ulvestad, L. Cragg, M. Blain, and J. P. Antel. 1993. Induction of primary T cell responses by human glial cells. J. Neurosci. Res. 36:382–390.

    Article  PubMed  Google Scholar 

  32. Weber, F., E. Meinl, F. Aloisi, C. Nevinny-Stickel, E. Albert, H. Wekerle, and R. Hohlfeld. 1994. Human astrocytes are only partially competent antigen presenting cells. Possible implications for lesion development in multiple sclerosis. Brain 117(Pt l):59–69.

    Article  PubMed  Google Scholar 

  33. Aloisi, F., F. Ria, G. Penna, and L. Adorini. 1998. Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J. Immunol. 160:4671–4680.

    PubMed  CAS  Google Scholar 

  34. Panitch, H. S., R. L. Hirsch, A. S. Haley, and K. P. Johnson. 1987. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1:893–895.

    Article  PubMed  CAS  Google Scholar 

  35. Soos, J. M., J. Morrow, T. A. Ashley, B. E. Szente, E. K. Bikoff, and S. S. Zamvil. 1998. Astrocytes express elements of the class II endocytic pathway and process central nervous system autoantigen for presentation to encephalitogenic T cells. J. Immunol. 161:5959–5966.

    PubMed  CAS  Google Scholar 

  36. Fontana, A., W. Fierz, and H. Wekerle. 1984. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307:273–276.

    Article  PubMed  CAS  Google Scholar 

  37. Takiguchi, M. and J. A. Frelinger. 1986. Induction of antigen presentation ability in purified cultures of astroglia by interferon-gamma. J. Mol. Cell Immunol. 2:269–280.

    PubMed  CAS  Google Scholar 

  38. Frei, K., H. Lins, C. Schwerdel, and A. Fontana. 1994. Antigen presentation in the central nervous system. The inhibitory effect of EL-10 on MHC class II expression and production of cytokines depends on the inducing signals and the type of cell analyzed. J. Immunol. 152:2720–2728.

    PubMed  CAS  Google Scholar 

  39. Dustin, M. L. and A. S. Shaw. 1999. Costimulation: building an immunological synapse. Science 283:649–650.

    Article  PubMed  CAS  Google Scholar 

  40. Grakoui, A., S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin. 1999. The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227.

    Article  PubMed  CAS  Google Scholar 

  41. Delon, J. 2000. The immunological synapse. Curr. BIOS. 10:R214.

    Article  CAS  Google Scholar 

  42. Ting, J. P. and X. S. Zhu. 1999. Class II MHC genes: a model gene regulatory system with great biologic consequences. Microbes. Infect. 1:855–861.

    PubMed  CAS  Google Scholar 

  43. Collawn, J. F. and E. N. Benveniste. 1999. Regulation of MHC class II expression in the central nervous system. Microbes. Infect. 1:893–902.

    Article  PubMed  CAS  Google Scholar 

  44. DeSandro, A., U. M. Nagarajan, and J. M. Boss. 1999. The bare lymphocyte syndrome: molecular clues to the transcriptional regulation of major histocompatibility complex class II genes. Am. J. Hum. Genet. 65:279–286.

    Article  PubMed  CAS  Google Scholar 

  45. Boss, J. M. 1997. Regulation of transcription of MHC class II genes. Curr. Opin. Immunol. 9:107–113.

    Article  PubMed  CAS  Google Scholar 

  46. Mach, B., V. Steimle, E. Martinez-Soria, and W. Reith. 1996. Regulation of MHC class II genes: lessons from a disease. Anna. Rev. Immunol. 14:301–331.

    Article  CAS  Google Scholar 

  47. Chang, C. H. and R. A. Flavell. 1995. Class II transactivator regulates the expression of multiple genes involved in antigen presentation. J. Exp. Med. 181:765–767.

    Article  PubMed  CAS  Google Scholar 

  48. Wolf, P. R. and H. L. Ploegh. 1995. How MHC class II molecules acquire peptide cargo: biosynthesis and trafficking through the endocytic pathway. Annu. Rev. Cell Dev. BIOS. 11:267–306.

    Article  CAS  Google Scholar 

  49. Harton, J. A. and J. P. Ting. 2000. Class II transactivator: mastering the art of major histocompatibility complex expression. Mol. Cell BIOS. 20:6185–6194.

    Article  CAS  Google Scholar 

  50. Itoh-Lindstrom, Y., J. F. Piskurich, N. J. Felix, Y. Wang, W. J. Brickey, J. L. Platt, B. H. Roller, and J. P. Ting. 1999. Reduced IL-4-, lipopolysaccharide-, and IFN-gamma-induced MHC class II expression in mice lacking class II transactivator due to targeted deletion of the GTP-binding domain. J. Immunol. 163:2425–2431.

    PubMed  CAS  Google Scholar 

  51. Williams, G. S., M. Malin, D. Vremec, C. H. Chang, R. Boyd, C. Benoist, and D. Mathis. 1998. Mice lacking the transcription factor CUT A—a second look. Int.Immunol. 10:1957–1967.

    Article  PubMed  CAS  Google Scholar 

  52. Chang, C. H., S. Guerder, S. C. Hong, W. van Ewijk, and R. A. Flavell. 1996. Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression. Immunity. 4:167–178.

    Article  PubMed  CAS  Google Scholar 

  53. Muhlethaler-Mottet, A., L. A. Otten, V. Steimle, and B. Mach. 1997. Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J. 16:2851–2860.

    Article  PubMed  CAS  Google Scholar 

  54. Piskurich, J. F., Y. Wang, M. W. Linhoff, L. C. White, and J. P. Ting. 1998. Identification of distinct regions of 5’ flanking DNA that mediate constitutive, IFN-gamma, STAT1, and TGF-beta-regulated expression of the class II transactivator gene. J. Immunol. 160:233–240.

    PubMed  CAS  Google Scholar 

  55. Dong, Y., W. M. Rohn, and E. N. Benveniste. 1999. IFN-gamma regulation of the type IV class II transactivator promoter in astrocytes. J. Immunol. 162:4731–4739.

    PubMed  CAS  Google Scholar 

  56. Nikcevich, K. M., J. F. Piskurich, R. P. Hellendall, Y. Wang, and J. P. Ting. 1999. Differential selectivity of CIITA promoter activation by IFN-gamma and IRF-1 in astrocytes and macrophages: CIITA promoter activation is not affected by TNF-alpha. J. Neuroimmunol. 99:195–204.

    Article  PubMed  CAS  Google Scholar 

  57. Siegrist, C. A., E. Martinez-Soria, I. Kern, and B. Mach. 1995. A novel antigen-processing-defective phenotype in major histocompatibility complex class II-positive CIITA transfectants is corrected by interferon-gamma. J. Exp. Med. 182:1793–1799.

    Article  PubMed  CAS  Google Scholar 

  58. Stuve, O., S. Youssef, A. J. Slavin, C. L. King, J. C. Patarroyo, D. L. Hirschberg, W. J. Brickey, J. M. Soos, J. F. Piskurich, H. A. Chapman, and S. S. Zamvil. 2002. The Role of the MHC Class II Transactivator in Class II Expression and Antigen Presentation by Astrocytes and in Susceptibility to Central Nervous System Autoimmune Disease. J. Immunol. 169:6720–6732.

    PubMed  CAS  Google Scholar 

  59. Brenner, M., W. C. Kisseberth, Y. Su, F. Besnard, and A. Messing. 1994. GFAP promoter directs astrocyte-specific expression in transgenic mice. J. Neurosci. 14:1030–1037.

    PubMed  CAS  Google Scholar 

  60. Beck, H., G. Schwarz, C. J. Schroter, M. Deeg, D. Baier, S. Stevanovic, E. Weber, C. Driessen, and H. Kalbacher. 2001. Cathepsin S and an asparagine-specific endoprotease dominate the proteolytic processing of human myelin basic protein in vitro. Eur. J. Immunol. 31:3726–3736.

    Article  PubMed  CAS  Google Scholar 

  61. Butter, C, J. K. O’Neill, D. Baker, S. E. Gschmeissner, and J. L. Turk. 1991. An immunoelectron microscopical study of the expression of class II major histocompatibility complex during chronic relapsing experimental allergic encephalomyelitis in Biozzi AB/H mice. J.Neuroimmunol. 33:37–42.

    Article  PubMed  CAS  Google Scholar 

  62. Togo, T., H. Akiyama, H. Kondo, K. Ikeda, M. Kato, E. Iseki, and K. Kosaka. 2000. Expression of CD40 in the brain of Alzheimer’s disease and other neurological diseases. Brain Res. 885:117–121.

    Article  PubMed  CAS  Google Scholar 

  63. Abdel-Haq, N., H. N. Hao, and W. D. Lyman. 1999. Cytokine regulation of CD40 expression in fetal human astrocyte cultures. J Neuroimmunol. 101:7–14.

    Article  PubMed  CAS  Google Scholar 

  64. Tan, L., K. B. Gordon, J. P. Mueller, L. A. Matis, and S. D. Miller. 1998. Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes. J. Immunol. 160:4271–4279.

    PubMed  CAS  Google Scholar 

  65. Soos, J. M., T. A. Ashley, J. Morrow, J. C. Patarroyo, B. E. Szente, and S. S. Zamvil. 1999. Differential expression of B7 co-stimulatory molecules by astrocytes correlates with T cell activation and cytokine production. Int.Immunol. 11:1169–1179.

    Article  PubMed  CAS  Google Scholar 

  66. Nguyen, V. T. and E. N. Benveniste. 2000. Involvement of STAT-1 and ets family members in interferon-gamma induction of CD40 transcription in microglia/macrophages. J BIOS Chem 271:23674–23684.

    Article  Google Scholar 

  67. Satoh, J., Y. B. Lee, and S. U. Kim. 1995. T-cell costimulatory molecules B7-1 (CD80) and B7-2 (CD86) are expressed in human microglia but not in astrocytes in culture. Brain Res. 704:92–96.

    Article  PubMed  CAS  Google Scholar 

  68. Williams, K., E. Ulvestad, and J. P. Antel. 1994. B7/BB-1 antigen expression on adult human microglia studied in vitro and in situ. Eur. J. Immunol. 24:3031–3037.

    Article  PubMed  CAS  Google Scholar 

  69. Windhagen, A., J. Newcombe, F. Dangond, C. Strand, M. N. Woodroofe, M. L. Cuzner, and D. A. Hafler. 1995. Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med 1985–1996.

    Google Scholar 

  70. Nikcevich, K. M., K. B. Gordon, L. Tan, S. D. Hurst, J. F. Kroepfl, M. Gardiner, T. A. Barrett, and S. D. Miller. 1997. IFN-gamma activated primary murine astrocytes express B7 costimulatory molecules and prime naive antigen-specific T cells. J. Immunol. 158:614–621.

    PubMed  CAS  Google Scholar 

  71. Cross, A. H. and G. Ku. 2000. Astrocytes and central nervous system endothelial cells do not express B7-1 (CD80) or B7-2 (CD86) immunoreactivity during experimental autoimmune encephalomyelitis. J Neuroimmunol. 110:76–82.

    Article  PubMed  CAS  Google Scholar 

  72. Issazadeh, S., V. Navikas, M. Schaub, M. Sayegh, and S. Khoury. 1998. Kinetics of expression of costimulatory molecules and their ligands in murine relapsing experimental autoimmune encephalomyelitis in vivo. J Immunol 161:1104–1112.

    PubMed  CAS  Google Scholar 

  73. Hogg, N. and R. C. Landis. 1993. Adhesion molecules in cell interactions. Curr. Opin. Immunol. 5:383–390.

    Article  PubMed  CAS  Google Scholar 

  74. Sobel, R. A., M. E. Mitchell, and G. Fondren. 1990. Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am. J. Pathol. 136:1309–1316.

    PubMed  CAS  Google Scholar 

  75. Washington, R., J. Burton, R. F. Todd, III, W. Newman, L. Dragovic, and P. Dore-Duffy. 1994. Expression of immunologically relevant endothelial cell activation antigens on isolated central nervous system microvessels from patients with multiple sclerosis. Ann. Neuml. 35:89–97.

    Article  CAS  Google Scholar 

  76. Brosnan, C. F., B. Cannella, L. Battistini, and C. S. Raine. 1995. Cytokine localization in multiple sclerosis lesions: correlation with adhesion molecule expression and reactive nitrogen species. Neurology 45:S16–S21.

    PubMed  CAS  Google Scholar 

  77. Cannella, B. and C. S. Raine. 1995. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann. Neurol. 37:424–435.

    Article  PubMed  CAS  Google Scholar 

  78. Bo, L., J. W. Peterson, S. Mork, P. A. Hoffman, W. M. Gallatin, R. M. Ransohoff, and B. D. Trapp. 1996. Distribution of immunoglobulin superfamily members ICAM-1,-2,-3, and the beta 2 integrin LFA-1 in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 55:1060–1072.

    PubMed  CAS  Google Scholar 

  79. Frohman, E. M., T. C. Frohman, M. L. Dustin, B. Vayuvegula, B. Choi, A. Gupta, N. S. van den, and S. Gupta. 1989. The induction of intercellular adhesion molecule 1 (ICAM-1) expression on human fetal astrocytes by interferon-gamma, tumor necrosis factor alpha, lymphotoxin, and interleukin-1: relevance to intracerebral antigen presentation. J. Neuroimmunol. 23:117–124.

    Article  PubMed  CAS  Google Scholar 

  80. Shrikant, P., I. Y. Chung, M. E. Ballestas, and E. N. Benveniste. 1994. Regulation of intercellular adhesion molecule-1 gene expression by tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma in astrocytes. J. Neuroimmunol. 209–220.

    Google Scholar 

  81. Selmaj, K. W., M. Farooq, W. T. Norton, C. S. Raine, and C. F. Brosnan. 1990. Proliferation of astrocytes in vitro in response to cytokines. A primary role for tumor necrosis factor. J. Immunol. 144:129–135.

    PubMed  CAS  Google Scholar 

  82. Moingeon, P., H. C. Chang, B. P. Wallner, C. Stebbins, A. Z. Frey, and E. L. Reinherz. 1989. CD2-mediated adhesion facilitates T lymphocyte antigen recognition function. Nature 339:312–314.

    Article  PubMed  CAS  Google Scholar 

  83. Damle, N. K., K. Klussman, G. Leytze, A. Aruffo, P. S. Linsley, and J. A. Ledbetter. 1993. Costimulation with integrin ligands intercellular adhesion molecule-1 or vascular cell adhesion molecule-1 augments activation-induced death of antigen-specific CD4+ T lymphocytes. J. Immunol. 151:2368–2379.

    PubMed  CAS  Google Scholar 

  84. Damle, N. K. and A. Aruffo. 1991. Vascular cell adhesion molecule 1 induces T-cell antigen receptor-dependent activation of CD4+T lymphocytes. Proc. Natl. Acad. Sci. U.S.A 88:6403–6407.

    Article  PubMed  CAS  Google Scholar 

  85. Raine, C. S. 1994. The Dale E. McFarlin Memorial Lecture: the immunology of the multiple sclerosis lesion. Ann. Neurol. 36Suppl:S61–S72.

    Article  PubMed  CAS  Google Scholar 

  86. Springer, T. A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314.

    Article  PubMed  CAS  Google Scholar 

  87. Springer, T. A. 1995. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol 57:827–872.

    Article  PubMed  CAS  Google Scholar 

  88. Hurwitz, A. A., W. D. Lyman, and J. W. Berman. 1995. Tumor necrosis factor alpha and transforming growth factor beta upregulate astrocyte expression of monocyte chemoattractant protein-1. J Neuroimmunol. 57:193–198.

    Article  PubMed  CAS  Google Scholar 

  89. Zhou, Z. H., P. Chaturvedi, Y. L. Han, S. Aras, Y. S. Li, P. E. Kolattukudy, D. Ping, J. M. Boss, and R. M. Ransohoff. 1998. IFN-gamma induction of the human monocyte chemoattractant protein (hMCP)-2 gene in astrocytoma cells: functional interaction between an IFN-gamma-activated site and a GC-rich element. J. Immunol. 160:3908–3916.

    PubMed  CAS  Google Scholar 

  90. Oh, J. W., L. M. Schwiebert, and E. N. Benveniste. 1999. Cytokine regulation of CC and CXC chemokine expression by human astrocytes. J. Neurovirol. 5:82–94.

    PubMed  CAS  Google Scholar 

  91. Kutsch, O., J. Oh, A. Nath, and E. N. Benveniste. 2000. Induction of the chemokines interleukin-8 and IP-10 by human immunodeficiency virus type 1 tat in astrocytes. J Virol. 74:9214–9221.

    Article  PubMed  CAS  Google Scholar 

  92. Godessart, N. and S. L. Kunkel. 2001. Chemokines in autoimmune disease. Curr. Opin. Immunol 13:670–675.

    Article  PubMed  CAS  Google Scholar 

  93. Choi, C, X. Xu, J. W. Oh, S. J. Lee, G. Y. Gillespie, H. Park, H. Jo, and E. N. Benveniste. 2001. Fas-induced expression of chemokines in human glioma cells: involvement of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Cancer Res. 61:3084–3091.

    PubMed  CAS  Google Scholar 

  94. Nelson, P. J. and A. M. Krensky. 2001. Chemokines, chemokine receptors, and allograft rejection. Immunity. 14:377–386.

    Article  PubMed  CAS  Google Scholar 

  95. Gerard, C. and B. J. Rollins. 2001. Chemokines and disease. Nat. Immunol. 2:108–115.

    Article  PubMed  CAS  Google Scholar 

  96. Karpus, W. J. and R. M. Ransohoff. 1998. Chemokine regulation of experimental autoimmune encephalomyelitis: temporal and spatial expression patterns govern disease pathogenesis. J. Immunol. 161:2667–2671.

    PubMed  CAS  Google Scholar 

  97. Karpus, W. J., N. W. Lukacs, B. L. McRae, R. M. Strieter, S. L. Kunkel, and S. D. Miller. 1995. An important role for the chemokine macrophage inflammatory protein-1 alpha in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J.Immunol. 155:5003–5010.

    PubMed  CAS  Google Scholar 

  98. Karpus, W. J. and K. J. Kennedy. 1997. MIP-1 alpha and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J. Leukoc. Blol. 62:681–687.

    CAS  Google Scholar 

  99. Izikson, L., R. S. Klein, I. F. Charo, H. L. Weiner, and A. D. Luster. 2000. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. Immunol Today 15:321–331.

    Google Scholar 

  100. Luther, S. A. and J. G. Cyster. 2001. Chemokines as regulators of T cell differentiation. Nat. Immunol 2:102–107.

    Article  PubMed  CAS  Google Scholar 

  101. Huang, D. R., J. Wang, P. Kivisakk, B. J. Rollins, and R. M. Ransohoff. Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis.

    Google Scholar 

  102. Fife, B. T., G. B. Huffnagle, W. A. Kuziel, and W. J. Karpus. 2000. CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 192:899–905.

    Article  PubMed  CAS  Google Scholar 

  103. Windhagen, A., L. B. Nicholson, H. L. Weiner, V. K. Kuchroo, and D. A. Hafler. 1996. Role of Th1 and Th2 cells in neurologic disorders. Chem.Immunol 63:171–186.

    Article  PubMed  CAS  Google Scholar 

  104. Khoury, S. J., W. W. Hancock, and H. L. Weiner. 1992. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J. Exp. Med. 176:1355–1364.

    Article  PubMed  CAS  Google Scholar 

  105. Begolka, W. S., C. L. Vanderlugt, S. M. Rahbe, and S. D. Miller. 1998. Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. J. Immunol. 161:4437–4446.

    PubMed  CAS  Google Scholar 

  106. Hofman, F. M., D. R. Hinton, K. Johnson, and J. E. Merrill. 1989. Tumor necrosis factor identified in multiple sclerosis brain. J. Exp. Med. 170:607–612.

    Article  PubMed  CAS  Google Scholar 

  107. Selmaj, K., C. S. Raine, B. Cannella, and C. F. Brosnan. 1991. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J. Clin. Invest 87:949–954.

    Article  PubMed  CAS  Google Scholar 

  108. Segal, B. M., B. K. Dwyer, and E. M. Shevach. 1998. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J. Exp. Med. 187:537–546.

    Article  PubMed  CAS  Google Scholar 

  109. Paulnock, D. M. 1992. Macrophage activation by T cells. Curr. Opin. Immunol. 4:344–349.

    Article  PubMed  CAS  Google Scholar 

  110. Kawahara, K., T. Gotoh, S. Oyadomari, M. Kajizono, A. Kuniyasu, K. Ohsawa, Y. Imai, S. Kohsaka, H. Nakayama, and M. Mori. 2001. Co-induction of argininosuccinate synthetase, cationic amino acid transporter-2, and nitric oxide synthase in activated murine microglial cells. Brain Res. Mol. Brain Res. 90:165–173.

    Article  PubMed  CAS  Google Scholar 

  111. Nomura, Y. 2001. NF-kappaB activation and IkappaB alpha dynamism involved in iNOS and chemokine induction in astroglial cells. Life Sci. 68:1695–1701.

    Article  PubMed  CAS  Google Scholar 

  112. Liu, J. S., M. L. Zhao, C. F. Brosnan, and S. C. Lee. 2001. Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am. J. Pathol. 158:2057–2066.

    PubMed  CAS  Google Scholar 

  113. Meinl, E., F. Aloisi, B. Ertl, F. Weber, M. R. de Waal, H. Wekerle, and R. Hohlfeld. 1994. Multiple sclerosis. Immunomodulatory effects of human astrocytes on T cells. Brain 117 (Pt 6): 1323–1332.

    Article  PubMed  Google Scholar 

  114. Hulshof, S., L. Montagne, C. J. De Groot, and D. Van, V. 2002. Cellular localization and expression patterns of interleukin-10, interleukin-4, and their receptors in multiple sclerosis lesions. Glia 38:24–35.

    Article  PubMed  Google Scholar 

  115. Ledeboer, A., J. J. Breve, A. Wierinckx, J. S. van der, A. F. Bristow, J. E. Leysen, F. J. Tilders, and A. M. Van Dam. 2002. Expression and regulation of interleukin-10 and interleukin-10 receptor in rat astroglial and microglial cells. Eur. J. Neurosci. 16:1175–1185.

    Article  PubMed  Google Scholar 

  116. Rho, M. B., S. Wesselingh, J. D. Glass, J. C. McArthur, S. Choi, J. Griffin, and W. R. Tyor. 1995. A potential role for interferon-alpha in the pathogenesis of HIV-associated dementia. Brain Behav. Immun. 9:366–377.

    Article  PubMed  CAS  Google Scholar 

  117. Benveniste, E. N. 1997. Cytokines: Influence on glial cell gene expression and function. In Neuroimmunoendocrinology. J. E. Blalock, ed. S Karger, Basel, pp. 31–75.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Stüve, O., Zamvil, S.S. (2005). The Role of Astrocytes in Autoimmune Disease of the Central Nervous System. In: Lavi, E., Constantinescu, C.S. (eds) Experimental Models of Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/0-387-25518-4_6

Download citation

Publish with us

Policies and ethics