Skip to main content

The Chemokine System in Experimental Autoimmune Encephalomyelitis

  • Chapter
Experimental Models of Multiple Sclerosis

Abstract

Chemokines chemoattract selected populations of inflammatory cells towards sites of inflammation in a gradient-dependent fashion, and also activate both recruited and resident inflammatory cells. Chemokines act on target cells through G-protein-coupled seven-transmembrane-domain receptors. High expression of several chemokines was found in the CNS during EAE. Cells expressing these chemokines were predominantly astrocytes and macrophages/microglia. In addition to chemokines, expression of several chemokine receptors was reported in EAE. Amelioration of EAE by anti-chemokine antibodies and studies in knock-out mice confirm the important roles of some chemokines in EAE pathogenesis. In the last several years many reports have been published addressing chemokine expression in multiple sclerosis. These results resemble results obtained earlier in EAE. Taken together, these data suggest that chemokine system may be a promising target for future treatment methods of multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rollins BJ: Chemokines. Blood. (1997) 90: 909–928.

    PubMed  CAS  Google Scholar 

  2. Luster F: Chemokines-chemotactic cytokines that mediate inflammation. New Engl J Med. (1998) 338: 436–445.

    Article  PubMed  CAS  Google Scholar 

  3. Premack BA and Schall TJ: Chemokine receptors: gateways to inflammation and infection. Nat Med. (1996) 2: 1174–8.

    Article  PubMed  CAS  Google Scholar 

  4. Murphy P: Chemokine receptors: structure, function and role in microbial pathogenesis. Cytokine Growth Factor Rev. (1996) 7: 47–65.

    Article  PubMed  CAS  Google Scholar 

  5. Ransohoff RM, Hamilton TA, Tani M, Stoler MH, Shick HE, Major JA, Estes ML, Thomas DM, and Tuohy VK: Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J. (1993) 7: 592–602.

    PubMed  CAS  Google Scholar 

  6. Hulkower K, Brosnan CF, Aquino DA, Cammer W, Kulshrestha S, Guida MP, Rapoport DA, and Berman JW: Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J. Immunol. (1993) 150: 2525–2533.

    PubMed  CAS  Google Scholar 

  7. Glabinski A, Tani M, Aras S, Stoler M, Tuohy V, and Ransohoff R: Regulation and function of central nervous system chemokines. Internal J Dev Neurosci. (1995) 13: 153–165.

    Article  CAS  Google Scholar 

  8. Tani M, Glabinski AR, Tuohy VK, Stoler MH, Estes ML, and Ransohoff RM: In situ hybridization analysis of glial fibrillary acidic protein mRNA reveals evidence of biphasic astrocyte activation during acute experimental autoimmune encephalomyelitis. Am J Pathol. (1996) 148: 889–96.

    PubMed  CAS  Google Scholar 

  9. Godiska R, Chantry D, Dietsch G, and Gray P: Chemokine expression in murine experimental autoimmune encephalomyelitis. J Neuroimmunol. (1995) 58: 167–176.

    Article  PubMed  CAS  Google Scholar 

  10. Glabinski A, Tuohy V, and Ransohoff R: Expression of chemokines RANTES, MIP-1 alpha and GRO-alpha correlates with inflammation in acute experimental autoimmune encephalomyelitis. Neuroimmunomodulation. (1998) 5: 166–171.

    Article  PubMed  CAS  Google Scholar 

  11. Glabinski A, Tani M, Tuohy VK, Tuthill R, and Ransohoff RM: Central nervous system chemokine gene expression follows leukocyte entry in acute murine experimental autoimmune encephalomyelitis. Brain Behav Immun. (1995) 9: 315–330.

    Article  PubMed  CAS  Google Scholar 

  12. Glabinski A, Tani M, Strieter R, Tuohy V, and Ransohoff R: Synchronous synthesis of α-and β-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of experimental autoimmune encephalomyelitis. Am J Pathol. (1997) 150: 617–630.

    PubMed  CAS  Google Scholar 

  13. Nygardas PT, Maatta JA, and Hinkkanen AE: Chemokine expression by central nervous system resident cells and infiltrating neutrophils during experimental autoimmune encephalomyelitis in the BALB/c mouse. Eur J Immunol. (2000) 30: 1911–8.

    Article  PubMed  CAS  Google Scholar 

  14. Sun D, Tani M, Newman TA, Krivacic K, Phillips M, Chernosky A, Gill P, Wei T, Griswold KJ, Ransohoff RM, and Weller RO: Role of chemokines, neuronal projections, and the blood-brain barrier in the enhancement of cerebral EAE following focal brain damage. J Neuropathol Exp Neurol. (2000) 59: 1031–43.

    PubMed  CAS  Google Scholar 

  15. Asensio VC, Lassmann S, Pagenstecher A, Steffensen SC, Henriksen SJ, and Campbell IL: C10 is a novel chemokine expressed in experimental inflammatory demyelinating disorders that promotes recruitment of macrophages to the central nervous system. Am J Pathol. (1999) 154: 1181–91.

    PubMed  CAS  Google Scholar 

  16. Hamilton N, Banyer J, Hapel A, Mahalingam S, Ramsay A, Ramshaw I, and Thomson S: IFN-gamma regulates murine interferon-inducible T cell alpha chemokine (I-TAC) expression in dendritic cell lines and during experimental autoimmune encephalomyelitis. Scand J Immunol. (2002) 55: 171–177.

    PubMed  CAS  Google Scholar 

  17. Jiang Y, Salafranca M, Adhikari S, Xia Y, Feng L, Sonntag M, deFiebre C, Pennell N, Streit W, and Harrison J: Chemokine receptor expression in cultured glia and rat experimental allergic encephalomyelitis. J Neuroimmunol. (1998) 86: 1–12.

    Article  PubMed  CAS  Google Scholar 

  18. Glabinski AR, O’Bryant S, Selmaj K, and Ransohoff RM: CXC chemokine receptor expression during chronic relapsing experimental autoimmune encephalomyelitis. Ann New York Acad Sci. (2000) 917: 135–144.

    Article  CAS  Google Scholar 

  19. Glabinski A, Bielecki B, O’Bryant S, Selmaj K, and Ransohoff R: Experimental autoimmune encephalomyelitis: CC chemokine receptor expression by trafficking cells. J Autoimmunity. (2002) in press

    Google Scholar 

  20. Serafini B, Columba-Cabezas S, Di Rosa F, and Aloisi F: Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am J Pathol. (2000) 157: 1991–2002.

    PubMed  CAS  Google Scholar 

  21. Narumi S, Kaburaki T, Yoneyama H, Iwamura H, Kobayashi Y, and Matsushima K: Neutralization of IFN-inducible protein 10/CXCL10 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol. (2002) 32: 1784–1791.

    Article  PubMed  CAS  Google Scholar 

  22. Alt C, Laschinger M, and Engelhardt B: Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL21 (SLC) at the blood-brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental utoimmune encephalomyelitis. Eur J Immunol. (2002) 32: 2133–2144.

    Article  PubMed  CAS  Google Scholar 

  23. Fife B, Paniagua M, Lukacs N, Kunkel S, and Karpus W: Selective CC chemokine receptor expression by central nervous system-infiltrating encephalitogenic T cells during experimental autoimmune encephalomyelitis. J Neurosci Res. (2001) 66: 705–714.

    Article  PubMed  CAS  Google Scholar 

  24. Rajan AJ, Asensio VC, Campbell IL, and Brosnan CF: Experimental autoimmune encephalomyelitis on the SJL mouse: effect of gamma delta T cell depletion on chemokine and chemokine receptor expression in the central nervous system. J Immunol. (2000) 164: 2120–30.

    PubMed  CAS  Google Scholar 

  25. Fischer FR, Santambrogio L, Luo Y, Berman MA, Hancock WW, and Dorf ME: Modulation of experimental autoimmune encephalomyelitis: effect of altered peptide ligand on chemokine and chemokine receptor expression. J Neuroimmunol. (2000) 110: 195–208.

    Article  PubMed  CAS  Google Scholar 

  26. Glabinski A, Krakowski M, Han Y, Owens T, and Ransohoff R: Chemokine expression in GKO mice (lacking interferon-gamma) with experimental autoimmune encephalomyelitis. J Neurovirol. (1999) 5: 95–101.

    PubMed  CAS  Google Scholar 

  27. Tran EH, Prince EN, and Owens T: IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. J Immunol. (2000) 164: 2759–68.

    PubMed  CAS  Google Scholar 

  28. Matejuk A, Dwyer J, Ito A, Bruender Z, Vandenbark A, and Offner H: Effects of cytokine deficiency on chemokine expression in CNS of mice with EAE. J Neurosci Res. (2002) 67: 680–688.

    Article  PubMed  CAS  Google Scholar 

  29. Matejuk A, Vandenbark A, Burrows G, Bebo B, and Offner H: Reduced chemokine and chemokine receptor expression in spinal cords of TCR BV8S2 transgenic mice protected against experimental autoimmune encephalomyelitis with BV8S2 protein. J Immunol. (2000) 164: 3924–3931.

    PubMed  CAS  Google Scholar 

  30. Izikson L, Klein RS, Charo IF, Weiner HL, and Luster AD: Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med. (2000) 192: 1075–80.

    Article  PubMed  CAS  Google Scholar 

  31. Fife BT, Huffnagle GB, Kuziel WA, and Karpus WJ: CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med. (2000) 192: 899–906.

    Article  PubMed  CAS  Google Scholar 

  32. Ma M, Wei T, Boring L, Charo I, Ransohoff R, and Jakeman L: Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. J Neurosci Res. (2002) 68: 691–702.

    Article  PubMed  CAS  Google Scholar 

  33. Huang D, Wang J, Kivisakk P, Rollins BJ, and Ransohoff RM: Absence of Monocyte Chemoattractant Protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med. (2001) 193: 713–725.

    Article  PubMed  CAS  Google Scholar 

  34. Rottman J, Slavin A, Silva R, Weiner H, Gerard C, and Hancock W: Leukocyte recruitment during onset of experimental autoimmune encephalomyelitis is CCR1 dependent. Eur J Immunol. (2000) 30: 2372–2377.

    Article  PubMed  CAS  Google Scholar 

  35. Tran EH, Kuziel WA, and Owens T: Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1 alpha or its CCR5 receptor. Eur J Immunol. (2000) 30: 1410–5.

    Article  PubMed  CAS  Google Scholar 

  36. Karpus WJ, Lukacs NW, McRae BL, Strieter RM, Kunkel SL, and Miller SD: An important role for the chemokine macrophage inflammatory protein-lα in the pathogenesis of the T cell-mediated autoimmune disease, experimental auotimmune encephalomyelitis. J Immunol. (1995) 155: 5003–5010.

    PubMed  CAS  Google Scholar 

  37. Kennedy K, Strieter R, Kunkel S, Lukacs N, and Karpus W: Acute and relapsing experimental autoimmune encephalomyelitis are regulated by differential expression of the CC chemokines macrophage inflammatory protein-1 and monocyte chemotactic protein 1. J Neuroimmunol. (1998) 92: 98–108.

    Article  PubMed  CAS  Google Scholar 

  38. Adamus G, Manczak M, and Machnicki M: Expression of CC chemokines and their receptors in the eye in autoimmune anterior uveitis associated with EAE. Invest Ophthalmol Vis Sci. (2001) 42: 2894–2903.

    PubMed  CAS  Google Scholar 

  39. Fife B, Kennedy K, Paniagua M, Lukacs N, Kunkel S, Luster A, and Karpus W: CXCL10 (IFN-gamma-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol. (2001) 166: 7617–7624.

    PubMed  CAS  Google Scholar 

  40. Matsui M, Weaver J, Proudfoot A, Wujek J, Wei T, Richer E, Trapp B, Rao A, and Ransohoff R: Treatment of experimental autoimmune encephalomyelitis with the chemokine receptor antagonist Met-RANTES. J Neuroimmunol. (2002) 128: 16–22.

    Article  PubMed  CAS  Google Scholar 

  41. Sun J, Xiao B, Lindblad M, Li B, Link H, Czerkinsky C, and Holmgren J: Oral administration of cholera toxin B subunit conjugated to myelin basic protein protects against experimental autoimmune encephalomyelitis by inducing transforming growth factor-beta-secreting cells and suppressing chemokine expression. Int Immunol. (2000) 12: 1449–57.

    Article  PubMed  CAS  Google Scholar 

  42. Zavala F, Abad S, Ezine S, Taupin V, Masson A, and Bach J: G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine-and cytokine-based immune deviation. J Immunol. (2002) 168: 2011–2019.

    PubMed  CAS  Google Scholar 

  43. Furlan R, Poliani P, Marconi P, Bergami A, Ruffini F, Adorini L, Glorioso J, Comi G, and Martino G: Central nervous system gene therapy with interleukin-4 inhibits progression of ongoing relapsing-remitting autoimmune encephalomyelitis in Biozzi AB/H mice. Gene Ther. (2001) 8: 13–9.

    Article  PubMed  CAS  Google Scholar 

  44. Hvas J, McLean C, Justesen J, Kannourakis G, Steinman L, Oksenberg JR, and Bernard CC: Perivascular T cells express the pro-inflammatory chemokine RANTES mRNA in multiple sclerosis lesions. Scand J Immunol. (1997) 46: 195–203.

    Article  PubMed  CAS  Google Scholar 

  45. Simpson J, Newcombe J, Cuzner M, and Woodroofe M: Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol. (1998) 84: 238–249.

    Article  PubMed  CAS  Google Scholar 

  46. McManus C, Berman J, Brett F, Staunton H, Farrell M, and Brosnan C: MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol. (1998) 86: 20–29.

    Article  PubMed  CAS  Google Scholar 

  47. Trebst C, Sorensen T, Kivisakk P, Cathcart M, Hesselgesser J, Horuk R, Sellebjerg F, Lassmann H, and Ransohoff R: CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Pathol. (2001) 159: 1701–1710.

    PubMed  CAS  Google Scholar 

  48. Sorensen T, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik V, Qin S, Rottman J, Sellebjerg F, Strieter R, Frederiksen J, and Ransohoff R: Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest. (1999) 103: 807–815.

    Article  PubMed  CAS  Google Scholar 

  49. Balashov KE, Rottman JB, Weiner HL, and Hancock WW: CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1 alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci U S A. (1999) 96: 6873–8.

    Article  PubMed  CAS  Google Scholar 

  50. Franciotta D, Martino G, Zardini E, Furlan R, Bergamaschi R, Andreoni L, and Cosi V: Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease and undergoing immunomodulatory therapies. J Neuroimmunol. (2001) 115: 192–198.

    Article  PubMed  CAS  Google Scholar 

  51. Misu T, Onodera H, Fujihara K, Matsushima K, Yoshie O, Okita N, Takase S, and Itoyama Y: Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Th1/Th2-associated chemokine signaling. J Neuroimmunol. (2001) 114: 207–212.

    Article  PubMed  CAS  Google Scholar 

  52. Iarlori C, Reale M, Lugaresi A, De Luca G, Bonanni L, Di Iorio A, Feliciani C, Conti P, and Gambi D: RANTES production and expression is reduced in relapsing-remitting multiple sclerosis patients treated with interferon-beta-lb. J Neuroimmunol. (2000) 107: 100–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Glabinski, A.R., Ransohoff, R.M. (2005). The Chemokine System in Experimental Autoimmune Encephalomyelitis. In: Lavi, E., Constantinescu, C.S. (eds) Experimental Models of Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/0-387-25518-4_17

Download citation

Publish with us

Policies and ethics