Skip to main content

The Anatomy of Hypocretin Neurons

  • Chapter
Hypocretins
  • 360 Accesses

5. Summary

Much has been accomplished regarding the neuronal interaction between the hypocretin network and other circuits, but eve more lies ahead to be unveiled. The hypocretin circuitry has emerged as a key player in the regulation of arousal and associated autonomic, endocrine and metabolic regulation. Its unique afferent and efferent connectivity predicts that this system will further emerge as critical component of a broadening array of brain functions most of which provide necessary support for higher brain functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. L. de Lecea, T. S. Kilduff, C. Peyron, X. Gao, P. E. Foye, P. E. Danielson, C. Fukuhara, E. L. Battenberg, V. T. Gautvik, F. S. Bartlett 2nd, W. N. Frankel, A. N. van den Pol, F. E. Bloom, K. M. Gautvik and J. G. Sutcliffe, The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity, Proc Natl Acad Sci U S A 95, 322–327 (1998).

    Article  PubMed  Google Scholar 

  2. T. Sakurai, A. Amemiya, M. Ishii, I. Matsuzaki, R. M. Chemelli, H. Tanaka, S. C. Williams, J. A. Richarson, G. P. Kozlowski, S. Wilson, J. R. Arch, R. E. Buckingham, A. C. Haynes, S. A. Carr, R. S. Annan, D. E. McNulty, W. S. Liu, J. A. Terrett, N. A. Elshourbagy, D. J. Bergsma and M. Yanagisawa, Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior, Cell 92, 573–585 (1998).

    Article  PubMed  CAS  Google Scholar 

  3. R. M. Chemelli, J. T. Willie, C. M. Sinton, J. K. Elmquist, T. Scammell, C. Lee, J. A. Richardson, S. C. Williams, Y. Xiong, Y. Kisanuki, T. E. Fitch, M. Nakazato, R. E. Hammer, C. B. Saper and M. Yanagisawa, Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation, Cell 98, 437–451 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. L. Lin, J. Faraco, R. Li, H. Kadotani, W. Rogers, X. Lin, X. Qiu, P. J. de Jong, S. Nishino and E. Mignot, The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene, Cell 98, 365–376 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. C. Peyron, J. Faraco, W. Rogers, B. Ripley, S. Overeem, Y. Charnay, S. Nevsimalova, M. Aldrich, D. Reynolds, R. Albin, R. Li, M. Hungs, M. Pedrazzoli, M. Padigaru, M. Kucherlapati, J. Fan, R. Maki, G. J. Lammers, C. Bouras, R. Kucherlapati, S. Nishino and E. Mignot, A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains, Nat Med. 6, 991–997 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. J. Hara, C. T. Beuckmann, T. Nambu, J. T. Willie, R. M. Chemelli, C. M. Sinton, F. Sugiyama, K. Yagami, K. Goto, M. Yanagisawa and T. Sakurai, Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity, Neuron 30, 345–354 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. J. G. Sutcliffe and L. de Lecea, The hypocretins: setting the arousal threshold, Nat Rev Neurosci. 3, 339–349 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. A. Yamanaka, C. T. Beuckmann, J. T. Willie, J. Hara, N. Tsujino, M. Mieda, M. Tominaga, K. Yagami, F. Sugiyama, K. Goto, M. Yanagisawa and T. Sakurai, Hypothalamic orexin neurons regulate arousal according to energy balance in mice, Neuron 38, 701–713 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. A. L. Kirchgessner and M. Liu, Orexin synthesis and response in the gut, Neuron 24, 941–951 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. C. Peyron, D. K. Tighe, A. N. van den Pol, L. de Lecea, H. C. Heller, J. G. Sutcliffe and T. S. Kilduff, Neurons containing hypocretin (orexin) project to multiple neuronal systems, J Neurosci. 18, 9996–10015 (1998).

    PubMed  CAS  Google Scholar 

  11. C. F. Elias, C. B. Saper, E. Maratos-Flier, N. A. Tritos, C. Lee, J. Kelly, J. B. Tatro, G. E. Hoffman, M. M. Ollmann, G. S. Barsh, T. Sakurai, M. Yanagisawa and J. K. Elmquist, Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area, J Comp Neurol. 402, 442–459 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. C. Broberger, L. de Lecea, J. G. Sutcliffe and T. Hokfelt, Hypocretin/orexin-and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems, J Comp Neurol. 402, 460–474 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. T. L. Horvath, S. Diano and A. N. van den Pol, Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations, J Neurosci. 19, 1072–1087 (1999).

    PubMed  CAS  Google Scholar 

  14. C. Leranth, H. Sakamoto, N. J. MacLusky, M. Shanabrough and F. Naftolin, Estrogen responsive cells in the arcuate nucleus of the rat contain glutamic acid decarboxylase (GAD): an electron microscopic immunocytochemical study, Brain Res. 331, 376–381 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. F. Naftolin, N. J. MacLusky, C. Z. Leranth, H. S. Sakamoto and L. M. Garcia-Segura, The cellular effects of estrogens on neuroendocrine tissues, J Steroid Biochem. 30, 195–207 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. P. C. Kind, G. M. Kelly, H. J. Fryer, C. Blakemore and S. Hockfield S, Phospholipase C-beta1 is present in the botrysome, an intermediate compartment-like organelle, and is regulated by visual experience in cat visual cortex, J Neurosci. 17, 1471–1480 (1997).

    PubMed  CAS  Google Scholar 

  17. A. N. van den Pol, X. B. Gao, K. Obrietan, T. S. Kilduff and A. B. Belousov, Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexins, J Neurosci. 18, 7962–7971 (1998).

    PubMed  Google Scholar 

  18. M. Collin, M. Backberg, M. L. Ovesjo, G. Fisone, R. H. Edwards, F. Fujiyama and B. Meister, Plasma membrane and vesicular glutamate transporter mRNAs/proteins in hypothalamic neurons that regulate body weight, Eur J Neurosci. 18, 1265–1278 (2003).

    Article  PubMed  Google Scholar 

  19. D. L. Rosin, M. C. Weston, C. P. Sevigny, R. L. Stornetta and P. G. Guyenet PG, Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2, J Comp Neurol. 465, 593–603 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. J. L. Guan, K. Uehara, S. Lu, Q. P. Wang, H. Funahashi, T. Sakurai, M. Yanagizawa and S. Shioda, Reciprocal synaptic relationships between orexin-and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation, Int J Obes Relat Metab Disord. 26, 1523–1532 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. A. N. van den Pol, C. Acuna-Goycolea, K. R. Clark and P. K. Ghosh, Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection, Neuron 42, 635–652 (2004).

    Article  PubMed  Google Scholar 

  22. R. Winsky-Sommerer, A. Yamanaka, S. Diano, A. J. Roberts, T. Sakurai, E. Borok, T. S. Kilduff, T. L. Horvath and L. de Lecea, Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response (under review).

    Google Scholar 

  23. Y. Li, X. B. Gao, T. Sakurai and A. N. van den Pol, Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system, Neuron 36, 1169–1181 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. T. L. Horvath and X. B. Gao, Unorthodox input organization and plasticity of the hypocretin/orexin neurons: a synaptological basis for easy arousal (under review).

    Google Scholar 

  25. A. Yamanaka, Y. Muraki, N. Tsujino, K. Goto and T. Sakurai, Regulation of orexin neurons by the monoaminergic and cholinergic systems, Biochem Biophys Res Commun. 303, 120–129 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. Y. Muraki, A. Yamanaka, N. Tsujino, T. S. Kilduff, K. Goto and T. Sakurai, Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor, J Neurosci. 24, 7159–7166 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. M. Håkansson, L. de Lecea, J. G. Sutcliffe, M. Yanagisawa and B. Meister, Leptin receptor-and STAT3-immunoreactivities in hypocretin/orexin neurones of the lateral hypothalamus, J Neuroendocrinol. 11, 653–663 (1999).

    Article  PubMed  Google Scholar 

  28. S. Diano, B. Horvath, H. F. Urbanski, P. Sotonyi and T. L. Horvath, Fasting activates the non-human primate hypocretin (orexin) system and its postsynaptic targets, Endocrinology 144, 3774–3778 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. S. Pinto, H. Liu, A. G. Roseberry, S. Diano, M. Shanabrough, X. Cai, J. M. Friedman and T. L. Horvath, Rapid re-wiring of arcuate nucleus feeding circuits by leptin, Science 304, 110–115 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. J. C. Bittencourt, F. Presse, C. Arias, C. Peto, J. Vaughan, J. L. Nahon, W. Vale and P. E. Sawchenko, The melanin-concentrating hormone system of the rat brain: an immuno-and hybridization histochemical characterization, J Comp Neurol. 319, 218–245 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. T. L. Horvath and S. Diano, The floating blueprint of hypothalamic feeding circuits. Nature Reviews Neuroscience 5, 662–667 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. T. C. Chou, C. E. Lee, J. Lu, J. K. Elmquist, J. Hara, J. T. Willie, C. T. Beuckmann, R. M. Chemelli, T. Sakurai, M. Yanagisawa, C. B. Saper and T. E. Scammell, Orexin (hypocretin) neurons contain dynorphin, J Neurosci. 21, RC168 (2001).

    PubMed  CAS  Google Scholar 

  33. M. L. Simmons, G. W. Terman, S. M. Gibbs and C. Chavkin, L-type calcium channels mediate dynorphin neuropeptide release from dendrites but not axons of hippocampal granule cells, Neuron 14, 1265–1272 (1995).

    Article  PubMed  CAS  Google Scholar 

  34. P. Trivedi, H. Yu, D. J. MacNeil, L. H. van der Ploeg and X. M. Guan, Distribution of orexin receptor mRNA in the rat brain, FEBS Lett. 438, 71–75 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. G. J. Hervieu, J. E. Cluderay, D. C. Harrison, J. C. Roberts and R. A. Leslie, Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord, Neuroscience 103, 777–797 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. J. N. Marcus, C. J. Aschkenasi, C. E. Lee, R. M. Chemelli, C. B. Saper, M. Yanagisawa and J. K. Elmquist, Differential expression of orexin receptors 1 and 2 in the rat brain, J Comp Neurol. 435, 6–25 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. M. Bäckberg, G. Hervieu, S. Wilson and B. Meister, Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake, Eur J Neurosci. 15, 315–328 (2002).

    Article  PubMed  Google Scholar 

  38. A. N. van den Pol, Hypothalamic hypocretin (orexin): robust innervation of the spinal cord, J Neurosci. 19, 3171–3182 (1999).

    PubMed  Google Scholar 

  39. M. R. Jain, T. L. Horvath, P. S. Kalra and S. P. Kalra, Evidence that NPY Y1 receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats, Regul Pept. 87, 19–24 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. T. L. Horvath, C. Peyron, S. Diano, A. Ivanov, G. Aston-Jones, T. S. Kilduff and A. N. van Den Pol, Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system, J Comp Neurol. 415, 145–159 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. J. J. Hagan, R. A. Leslie, S. Patel, M. L. Evans, T. A. Wattam, S. Holmes, C. D. Benham, S. G. Taylor, C. Routledge, P. Hemmati, R. P. Munton, T. E. Ashmeade, A. S. Shah, J. P. Hatcher, P. D. Hatcher, D. N. Jones, M. I. Smith, D. C. Piper, A. J. Hunter, R. A. Porter and N. Upton, Orexin A activates locus coeruleus cell firing and increases arousal in the rat, Proc Natl Acad Sci U S A. 96, 10911–6 (1999).

    Article  PubMed  CAS  Google Scholar 

  42. M. Wu, L. Zaborszky, T. Hajszan, A. N. van den Pol and M. Alreja, Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons, J Neurosci. 24, 3527–3536 (2004).

    Article  PubMed  CAS  Google Scholar 

  43. L. Bayer, G. Mairet-Coello, P. Y. Risold and B. Griffond, Orexin/hypocretin neurons: chemical phenotype and possible interactions with melanin-concentrating hormone neurons, Regul Pept. 104, 33–39 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Horvath, T.L. (2005). The Anatomy of Hypocretin Neurons. In: de Lecea, L., Sutcliffe, J.G. (eds) Hypocretins. Springer, Boston, MA. https://doi.org/10.1007/0-387-25446-3_6

Download citation

Publish with us

Policies and ethics