Skip to main content

Hypocretin/Orexin in Stress and Arousal

  • Chapter
Hypocretins

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. K. A. Al Barazanji, S. Wilson, J. Baker, D. S. Jessop, and M. S. Harbuz, Central Orexin-A Activates Hypothalamic-Pituitary-Adrenal Axis and Stimulates Hypothalamic Corticotropin Releasing Factor and Arginine Vasopressin Neurones in Conscious Rats, J. Neuroendocrinol. 13, 421ā€“424 (2001).

    ArticleĀ  Google ScholarĀ 

  2. S. M. Antelman, H. Szechtman, P. Chin, and A. E. Fisher, Tail pinch-induced eating, gnawing and licking behavior in rats: dependence on the nigrostriatal dopamine system, Brain Res 99, 319ā€“337 (1975).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. A. F. Arnsten, The biology of being frazzled, Science 280, 1711ā€“1712 (1998).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. A. F. Arnsten, Development of the cerebral cortex: XIV. Stress impairs prefrontal cortical function, J. Am. Acad. Child Adolesc. Psychiatry 38, 220ā€“222 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. A. F. Arnsten, Stress impairs prefrontal cortical function in rats and monkeys: role of dopamine D1 and norepinephrine alpha-1 receptor mechanisms, Prog. Brain Res. 126, 183ā€“192 (2000).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. A. F. Arnsten, C. Berridge, and D. S. Segal, Stress produces opioid-like effects on investigatory behavior, Pharmacol. Biochem. Behav. 22, 803ā€“809 (1985).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. G. Aston-Jones and F. E. Bloom, Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle, J. Neurosci. 1, 876ā€“886 (1981).

    PubMedĀ  CASĀ  Google ScholarĀ 

  8. M. Backberg, G. Hervieu, S. Wilson, and B. Meister, Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake, Eur. J. Neurosci. 15, 315ā€“328 (2002).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  9. L. L. Bernardis and L. L. Bellinger, The lateral hypothalamic area revisited: ingestive behavior, Neurosci. Biobehav. Rev. 20, 189ā€“287 (1996).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. C. W. Berridge and A. J. Dunn, Restraint-stress-induced changes in exploratory behavior appear to be mediated by norepinephrine-stimulated release of CRF, J. Neurosci. 9, 3513ā€“3521 (1989).

    PubMedĀ  CASĀ  Google ScholarĀ 

  11. C. W. Berridge and R. A. EspaƱa, Synergistic sedative effects of noradrenergic Ī±1-and Ī²-receptor blockade on forebrain electroencephalographic and behavioral indices, Neuroscience 99, 495ā€“505 (2000).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. C. W. Berridge and S. L. Foote, Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus, J. Neurosci. 11, 3135ā€“3145 (1991).

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. C. W. Berridge and S. L. Foote, Enhancement of behavioral and electroencephalographic indices of waking following stimulation of noradrenergic beta-receptors within the medial septal region of the basal forebrain, J. Neurosci. 16, 6999ā€“7009 (1996).

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. C. W. Berridge, E. Mitton, W. Clark, and R. H. Roth, Engagement in a non-escape (displacement) behavior elicits a selective and lateralized suppression of frontal cortical dopaminergic utilization in stress, Synapse 32, 187ā€“197 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. C. W. Berridge and J. Oā€™Neill, Differential sensitivity to the wake-promoting actions of norepinephrine within the medial preoptic area and the substantia innominata, Behav. Neurosci. 115, 165ā€“174 (2001).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. C. W. Berridge and B. D. Waterhouse, The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes, Brain Res. Brain Res. Rev. 42, 33ā€“84 (2003).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  17. P. Bourgin, S. Huitron-Resendiz, A. D. Spier, V. Fabre, B. Morte, J. R. Criado, J. G. Sutcliffe, S. J. Henriksen, and L. de Lecea, Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons, J. Neurosci. 20, 7760ā€“7765 (2000).

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. G. Buzsaki, R. G. Bickford, G. Ponomareff, L. J. Thal, R. Mandel, and F. H. Gage, Nucleus basalis and thalamic control of neocortical activity in the freely moving rat, J. Neurosci. 8, 4007ā€“4026 (1988).

    PubMedĀ  CASĀ  Google ScholarĀ 

  19. W. B. Cannon, The emergency function of the adrenal medulla in pain and the major emotions, Am. J. Physiol 33, 356ā€“372 (1914).

    CASĀ  Google ScholarĀ 

  20. F. C. Chang and M. R. Opp, Corticotropin releasing hormone (CRF) as a regulator of waking, Neurosci. Biobehav. Rev. 25, 445ā€“453 (2001).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. F. C. Chang and M. R. Opp, A corticotropin-releasing hormone antisense oligodeoxynucleotide reduces spontaneous waking in the rat, Regul. Pept. 117, 43ā€“52 (2004).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. R. M. Chemelli, J. T. Willie, C. M. Sinton, J. K. Elmquist, T. Scammell, C. Lee, J. A. Richardson, S. C. Williams, Y. Xiong, Y. Kisanuki, T. E. Fitch, M. Nakazato, R. E. Hammer, C. B. Saper, and M. Yanagisawa, Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation, Cell 98, 437ā€“451 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. C. T. Chen, L. L. Hwang, J. K. Chang, and N. J. Dun, Pressor effects of orexins injected intracisternally and to rostral ventrolateral medulla of anesthetized rats, Am. J. Physiol Regul. Integr. Comp Physiol 278, R692ā€“R697 (2000).

    PubMedĀ  CASĀ  Google ScholarĀ 

  24. J. E. Cluderay, D. C. Harrison, and G. J. Hervieu, Protein distribution of the orexin-2 receptor in the rat central nervous system, Regul. Pept. 104, 131ā€“144 (2002).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Y. Date, Y. Ueta, H. Yamashita, H. Yamaguchi, S. Matsukura, K. Kangawa, T. Sakurai, M. Yanagisawa, and M. Nakazato, Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems, Proc. Natl. Acad. Sci. 96, 748ā€“753 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. M. G. Dube, S. P. Kalra, and P. S. Kalra, Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action, Brain Res 842, 473ā€“477 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. A. J. Dunn, Stress-related activation of cerebral dopaminergic systems, Ann. N. Y. Acad. Sci. 537, 188ā€“205 (1988).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. A. J. Dunn and C. W. Berridge, Corticotropin-releasing factor administration elicits a stress-like activation of cerebral catecholaminergic systems, Pharmacol. Biochem. Behav. 27, 685ā€“691 (1987).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. A. J. Dunn and C. W. Berridge, Is corticotropin-releasing factor a mediator of stress responses?, Ann. N. Y. Acad. Sci. 579, 183ā€“191 (1990).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. A. J. Dunn and C. W. Berridge, Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses?, Brain Res. Brain Res. Rev. 15, 71ā€“100(1990).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. A. J. Dunn, C. W. Berridge, Y. I. Lai, and T. L. Yachabach, CRF-induced excessive grooming behavior in rats and mice, Peptides 8, 841ā€“844 (1987).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. A. J. Dunn, A. L. Guild, N. R. Kramarcy, and M. D. Ware, Benzodiazepines decrease grooming in response to novelty but not ACTH or beta-endorphin, Pharmacol. Biochem. Behav. 15, 605ā€“608 (1981).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. A. J. Dunn and R. W. Hurd, ACTH acts via an anterior ventral third ventricular site to elicit grooming behavior, Peptides 7, 651ā€“657 (1986).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. J. K. Elmquist, C. F. Elias, and C. B. Saper, From lesions to leptin: hypothalamic control of food intake and body weight, Neuron 22, 221ā€“232 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. R. A. EspaƱa, B. A. Baldo, A. E. Kelley, and C. W. Berridge, Wake-promoting and sleep-suppressing actions of hypocretin (orexin): Basal forebrain sites of action. Neuroscience 106, 699ā€“715 (2001).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  36. R. A. EspaƱa, S. Plahn, and C. W. Berridge, Circadian-dependent and circadian-independent behavioral actions of hypocretin/orexin, Brain Res. 943, 224ā€“236 (2002).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  37. R. A. EspaƱa, R. J. Valentino, and C. W. Berridge, Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration, Neuroscience 121, 201ā€“217 (2003).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. J. Fadel and A. Y. Deutch, Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area, Neuroscience 111, 379ā€“387 (2002).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. S. L. Foote, G. Aston-Jones, and F. E. Bloom, Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal, Proc. Natl. Acad. Sci. 77, 3033ā€“3037 (1980).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. W. H. Gispen and R. L. Isaacson, ACTH-induced excessive grooming in the rat, Pharmacol. Ther. 12, 209ā€“246 (1981).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. M. A. Greco and P. J. Shiromani, Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats, Brain Res Mol. Brain Res 88, 176ā€“182 (2001).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. J. J. Hagan, R. A. Leslie, S. Patel, M. L. Evans, T. A. Wattam, S. Holmes, C. D. Benham, S. G. Taylor, C. Routledge, P. Hemmati, R. P. Munton, T. E. Ashmeade, A. S. Shah, J. P. Hatcher, P. D. Hatcher, D. N. Jones, M. I. Smith, D. C. Piper, A. J. Hunter, R. A. Porter, and N. Upton, Orexin A activates locus coeruleus cell firing and increases arousal in the rat, Proc. Natl. Acad. Sci. 96, 10911ā€“10916 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. M. B. Hennessy and T. Foy, Nonedible material elicits chewing and reduces the plasma corticosterone response during novelty exposure in mice, Behav. Neurosci. 101, 237ā€“245 (1987).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. G. J. Hervieu, J. E. Cluderay, D. C. Harrison, J. C. Roberts, and R. A. Leslie, Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord, Neuroscience 103, 777ā€“797 (2001).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. J. A. Hobson, R. W. McCarley, and P. W. Wyzinski, Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups, Science 189, 55ā€“58 (1975).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. W. E. Hoffman and M. I. Phillips, Regional study of cerebral ventricle sensitive sites to angiotensin II, Brain Res. 110, 313ā€“330 (1976).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. T. L. Horvath, C. Peyron, S. Diano, A. Ivanov, G. Aston-Jones, T. S. Kilduff, and A. N. van Den Pol, Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system, J. Comp Neurol. 415, 145ā€“159 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. T. Ida, K. Nakahara, T. Katayama, N. Murakami, and M. Nakazato, Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats, Brain Res. 821, 526ā€“529 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. T. Ida, K. Nakahara, T. Murakami, R. Hanada, M. Nakazato, and N. Murakami, Possible involvement of orexin in the stress reaction in rats, Biochem. Biophys. Res. Commun. 270, 318ā€“323 (2000).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. P. M. Iuvone and A. J. Dunn, Tyrosine hydroxylase activation in mesocortical 3,4-dihydroxyphenylethylamine neurons following footshock, J. Neurochem. 47, 837ā€“844 (1986).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. A. Ivanov and G. Aston-Jones, Hypocretin/orexin depolarizes and decreases potassium conductance in locus coeruleus neurons, Neuroreport 11, 1755ā€“1758 (2000).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. M. JĆ”szberĆ©nyi, E. BujdosĆ³, I. Pataki, and G. Telegdy, Effects of orexins on the hypothalamic-pituitaryadrenal system, J. Neuroendocrinol. 12, 1174ā€“1178 (2000).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  53. L. I. Kiyashchenko, B. Y. Mileykovskiy, Y. Y. Lai, and J. M. Siegel, Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area, J. Neurophysiol. 85, 2008ā€“2016 (2001).

    PubMedĀ  CASĀ  Google ScholarĀ 

  54. G. F. Koob and F. E. Bloom, Corticotropin-releasing factor and behavior, Fed. Proc. 44, 259ā€“263 (1985).

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. G. F. Koob, K. Thatcher-Briton, A. Tazi, and M. Le Moal, Behavioral pharmacology of stress: Focus on CNS corticotropin-releasing factor, Adv. Exp. Med. Biol. 245, 25ā€“34 (1988).

    PubMedĀ  CASĀ  Google ScholarĀ 

  56. T. M. Korotkova, O. A. Sergeeva, K. S. Eriksson, H. L. Haas, and R. E. Brown, Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins, J. Neurosci. 23, 7ā€“11 (2003).

    PubMedĀ  CASĀ  Google ScholarĀ 

  57. V. M. Kumar, S. Datta, G. S. Chhina, and B. Singh, Alpha adrenergic system in medial preoptic area involved in sleep-wakefulness in rats, Brain Res. Bull. 16, 463ā€“468 (1986).

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. M. Kuru, Y. Ueta, R. Serino, M. Nakazato, Y. Yamamoto, I. Shibuya, and H. Yamashita, Centrally administered orexin/hypocretin activates HPA axis in rats, Neuroreport 11, 1977ā€“1980 (2000).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. S. Levine, in: A definition of stress?/Animal stress, edited by G., Moberg (Waverly Press, Baltimore, 1985), pp. 51ā€“69.

    Google ScholarĀ 

  60. R. E. Lewis and M. I. Phillips, Localization of the central pressor action of bradykinin to the cerebral third ventricle, Am. J. Physiol 247, R63ā€“R68 (1984).

    PubMedĀ  CASĀ  Google ScholarĀ 

  61. L. Lin, J. Faraco, R. Li, H. Kadotani, W. Rogers, X. Lin, X. Qiu, P. J. de Jong, S. Nishino, and E. Mignot, The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene, Cell 98, 365ā€“376 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. M. Lubkin and A. Stricker-Krongrad, Independent feeding and metabolic actions of orexins in mice 714, Biochem. Biophys. Res. Commun. 253, 241ā€“245 (1998).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. L. K. Malendowicz, C. Tortorella, and G. G. Nussdorfer, Orexins stimulate corticosterone secretion of rat adrenocortical cells, through the activation of the adenylate cyclase-dependent signaling cascade, J. teroid Biochem. Mol. Biol. 70, 185ā€“188 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. B. N. Mallick and M. N. Alam, Different types of norepinephrinergic receptors are involved in preoptic area mediated independent modulation of sleep-wakefulness and body temperature, Brain Res 591, 8ā€“19 (1992).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. J. N. Marcus, C. J. Aschkenasi, C. E. Lee, R. M. Chemelli, C. B. Saper, M. Yanagisawa, and J. K. Elmquist, Differential expression of orexin receptors 1 and 2 in the rat brain, J. Comp Neurol. 435, 6ā€“25 (2001).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. M. Marinelli and P. V. Piazza, Interaction between glucocorticoid hormones, stress and psychostimulant drugs, Eur. J. Neurosci. 16, 387ā€“394 (2002).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  67. P. J. Martins, V. Dā€™Almeida, M. Pedrazzoli, L. Lin, E. Mignot, and S. Tufik, Increased hypocretin-1 (orexina) levels in cerebrospinal fluid of rats after short-term forced activity, Regul. Pept. 117, 155ā€“158 (2004).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  68. J. W. Mason, The scope of psychoendocrine research, Psychosom Med 565ā€“575 (1968).

    Google ScholarĀ 

  69. G. Mazzocchi, L. K. Malendowicz, L. Gottardo, F. Aragona, and G. G. Nussdorfer, Orexin A Stimulates Cortisol Secretion from Human Adrenocortical Cells through Activation of the Adenylate Cyclase-Dependent Signaling Cascade, J. Clin. Endocrinol. Metab 86, 778ā€“782 (2001).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  70. I. Merchenthaler, Corticotropin Releasing-Factor (Crf)-Like Immunoreactivity in the Rat Central Nervous-System-Extrahypothalamic Distribution, Peptides 5, 53ā€“69 (1984).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  71. R. Metherate, C. L. Cox, and J. H. Ashe, Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine, J. Neurosci. 12, 4701ā€“4711 (1992).

    PubMedĀ  CASĀ  Google ScholarĀ 

  72. T. Nambu, T. Sakurai, K. Mizukami, Y. Hosoya, M. Yanagisawa, and K. Goto, Distribution of orexin neurons in the adult rat brain, Brain Res. 827, 243ā€“260 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. L. K. Nisenbaum, M. J. Zigmond, A. F. Sved, and E. D. Abercrombie, Prior exposure to chronic stress results in enhanced synthesis and release of hippocampal norepinephrine in response to a novel stressor, J. Neurosci. 11, 1478ā€“1484 (1991).

    PubMedĀ  CASĀ  Google ScholarĀ 

  74. S. Nishino, B. Ripley, S. Overeem, G. J. Lammers, and E. Mignot, Hypocretin (orexin) deficiency in human narcolepsy, Lancet 355, 39ā€“40 (2000).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  75. K. W. Nowak, P. Mackowiak, M. M. Switonska, M. Fabis, and L. K. Malendowicz, Acute orexin effects on insulin secretion in the rat: in vivo and in vitro studies, Life Sci. 66, 449ā€“454 (2000).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  76. M. E. Page, C. W. Berridge, S. L. Foote, and R. J. Valentino, Corticotropin-releasing factor in the locus coeruleus mediates EEG activation associated with hypotensive stress, Neurosci. Lett. 164, 81ā€“84 (1993).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  77. C. Peyron, D. K. Tighe, A. N. van Den Pol, L. de Lecea, H. C. Heller, J. G. Sutcliffe, and T. S. Kilduff, Neurons containing hypocretin (orexin) project to multiple neuronal systems, J. Neurosci. 18, 9996ā€“10015 (1998).

    PubMedĀ  CASĀ  Google ScholarĀ 

  78. D. C. Piper, N. Upton, M. I. Smith, and A. J. Hunter, The novel brain neuropeptide, orexin-A, modulates the sleep-wake cycle of rats, Eur. J. Neurosci. 12, 726ā€“730 (2000).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  79. T. W. Robbins, Cortical noradrenaline, attention and arousal, Psychol. Med. 14, 13ā€“21 (1984).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  80. F. Sakamoto, S. Yamada, and Y. Ueta, Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons, Regul. Pept. 118, 183ā€“191 (2004).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  81. T. Sakurai, A. Amemiya, M. Ishii, I. Matsuzaki, R. M. Chemelli, H. Tanaka, S. C. Williams, J. A. Richarson, G. P. Kozlowski, S. Wilson, J. R. Arch, R. E. Buckingham, A. C. Haynes, S. A. Carr, R. S. Annan, D. E. McNulty, W. S. Liu, J. A. Terrett, N. A. Elshourbagy, D. J. Bergsma, and M. Yanagisawa, Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior, Cell 92, 1 (1998).

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  82. T. Sakurai, T. Moriguchi, K. Furuya, N. Kajiwara, T. Nakamura, M. Yanagisawa, and K. Goto, Structure and function of human prepro-orexin gene, J. Biol. Chem. 274, 17771ā€“17776 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  83. W. K. Samson, B. Gosnell, J. K. Chang, Z. T. Resch, and T. C. Murphy, Cardiovascular regulatory actions of the hypocretins in brain, Brain Res 831, 248ā€“253 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  84. W. K. Samson, M. M. Taylor, M. Follwell, and A. V. Ferguson, Orexin actions in hypothalamic paraventricular nucleus: physiological consequences and cellular correlates, Regul. Pept. 104, 97ā€“103 (2002).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  85. P. E. Sawchenko and L. W. Swanson, Localization, Colocalization, and Plasticity of Corticotropin-Releasing Factor Immunoreactivity in Rat-Brain, Federation Proceedings 44, 221ā€“227 (1985).

    PubMedĀ  CASĀ  Google ScholarĀ 

  86. H. Selye, The general adaptation syndrome and the diseases of adaptation, J. Clin. Endocrinol. Metab 6, 117ā€“230 (1946).

    CASĀ  Google ScholarĀ 

  87. T. Shirasaka, S. Miyahara, T. Kunitake, Q. H. Jin, K. Kato, M. Takasaki, and H. Kannan, Orexin depolarizes rat hypothalamic paraventricular nucleus neurons, Am. J. Physiol Regul. Integr. Comp Physiol 281, R1114ā€“R1118 (2001).

    PubMedĀ  CASĀ  Google ScholarĀ 

  88. T. Shirasaka, M. Nakazato, S. Matsukura, M. Takasaki, and H. Kannan, Sympathetic and cardiovascular actions of orexins in conscious rats, Am. J. Physiol 277, R1780ā€“R1785 (1999).

    PubMedĀ  CASĀ  Google ScholarĀ 

  89. E. A. Stone, Effect of stress on norepinephrine-stimulated cyclic AMP formation in brain slices, Pharmacol. Biochem. Behav. 8, 583ā€“591 (1978).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  90. E. A. Stone and J. E. Platt, Brain adrenergic receptors and resistance to stress, Brain Res. 237, 405ā€“414 (1982).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  91. R. Suzuki, H. Shimojima, H. Funahashi, S. Nakajo, S. Yamada, J. L. Guan, S. Tsurugano, K. Uehara, Y. Takeyama, S. Kikuyama, and S. Shioda, Orexin-1 receptor immunoreactivity in chemically identified target neurons in the rat hypothalamus, Neurosci. Lett. 324, 5ā€“8 (2002).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  92. D. C. Sweet, A. S. Levine, C. J. Billington, and C. M. Kotz, Feeding response to central orexins, Brain Res 821, 535ā€“538 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  93. S. Taheri, M. Mahmoodi, J. Opacka-Juffry, M. A. Ghatei, and S. R. Bloom, Distribution and quantification of immunoreactive orexin A in rat tissues, FEBS Lett. 457, 157ā€“161 (1999).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  94. T. C. Thannickal, R. Y. Moore, R. Nienhuis, L. Ramanathan, S. Gulyani, M. Aldrich, M. Cornford, and J. M. Siegel, Reduced number of hypocretin neurons in human narcolepsy, Neuron 27, 469ā€“474 (2000).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  95. A. M. Thierry, J. P. Tassin, G. Blanc, and J. Glowinski, Selective activation of mesocortical DA system by stress, Nature 263, 242ā€“244 (1976).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  96. A. Tsuda, M. Tanaka, Y. Ida, I. Shirao, Y. Gondoh, M. Oguchi, and M. Yoshida, Expression of aggression attenuates stress-induced increases in rat brain noradrenaline turnover, Brain Res 474, 174ā€“180 (1988).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  97. W. Vale, J. Spiess, C. Rivier, and J. Rivier, Characterization of A 41-Residue Ovine Hypothalamic Peptide That Stimulates Secretion of Corticotropin and Beta-Endorphin, Science 213, 1394ā€“1397 (1981).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  98. R. J. Valentino, S. L. Foote, and G. Aston-Jones, Corticotropin-releasing factor activates noradrenergic neurons of the locus coeruleus, Brain Res. 270, 363ā€“367 (1983).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  99. N. M. Vittoz and C. W. Berridge, Hypocretin increases dopamine efflux in rat prefrontal cortex and not in nucleus accumbens, Society for Neuroscience Meeting November 8ā€“12 (New Orleans, LA), abstract 931.14, (2003).

    Google ScholarĀ 

  100. Y. Yoshida, N. Fujiki, T. Nakajima, B. Ripley, H. Matsumura, H. Yoneda, E. Mignot, and S. Nishino, Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities, Eur. J. Neurosci. 14, 1075ā€“1081 (2001).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  101. G. Yoshimichi, H. Yoshimatsu, T. Masaki, and T. Sakata, Orexin-A regulates body temperature in coordination with arousal status, Exp. Biol. Med. 226, 468ā€“476 (2001).

    CASĀ  Google ScholarĀ 

  102. J. M. Zeitzer, C. L. Buckmaster, K. J. Parker, C. M. Hauck, D. M. Lyons, and E. Mignot, Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness, J. Neurosci. 23, 3555ā€“3560 (2003).

    PubMedĀ  CASĀ  Google ScholarĀ 

  103. L. Zhu, T. Onaka, T. Sakurai, and T. Yada, Activation of orexin neurones after noxious but not conditioned fear stimuli in rats, Neuroreport 13, 1351ā€“1353 (2002).

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Berridge, C.W., EspaƱa, R.A. (2005). Hypocretin/Orexin in Stress and Arousal. In: de Lecea, L., Sutcliffe, J.G. (eds) Hypocretins. Springer, Boston, MA. https://doi.org/10.1007/0-387-25446-3_24

Download citation

Publish with us

Policies and ethics