Skip to main content

Effects Of Hypocretin/Orexin on the Thalamocortical Activating System

  • Chapter
Hypocretins

7. Conclusions

Hypocretin can excite the thalamocortical arousal pathway at two levels. It can selectively depolarize neurons in the midline-intralaminar nuclei of the thalamus, but it can also directly excite their axon terminals within prefrontal cortex. Since these two regions appear to receive projections from different populations of hypocretin neurons, further understanding of what governs hypocretin release in these two areas will yield greater insight into thalamocortical involvement in arousal and attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. S. Kinomura, J. Larsson, B. Gulyas and P. E. Roland, Activation by attention of the human reticular formation and thalamic intralaminar nuclei, Science. 271, 512–5 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. C. M. Portas, G. Rees, A. M. Howseman, O. Josephs, R. Turner and C. D. Frith, A specific role for the thalamus in mediating the interaction of attention and arousal in humans, J Neurosci. 18, 8979–89 (1998).

    PubMed  CAS  Google Scholar 

  3. H. W. Berendse and H. J. Groenewegen, Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat, Neuroscience. 42, 73–102 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. Y. D. Van der Werf, M. P. Witter and H. J. Groenewegen, The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness, Brain Res Brain Res Rev. 39, 107–40 (2002).

    Article  PubMed  Google Scholar 

  5. G. Marini, L. Pianca and G. Tredici, Thalamocortical projection from the parafascicular nucleus to layer V pyramidal cells in frontal and cingulate areas of the rat, Neurosci Lett. 203, 81–4 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. M. Deschenes, J. Bourassa and A. Parent, Striatal and cortical projections of single neurons from the central lateral thalamic nucleus in the rat, Neuroscience. 72, 679–87 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. M. J. Gutnick and D. A. Prince, Thalamocortical relay neurons: antidromic invasion of spikes from a cortical epileptogenic focus, Science. 176, 424–6 (1972).

    Article  PubMed  CAS  Google Scholar 

  8. D. Pinault and R. Pumain, Antidromic firing occurs spontaneously on thalamic relay neurons: triggering of somatic intrinsic burst discharges by ectopic action potentials, Neuroscience. 31, 625–37 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. D. Pinault, Backpropagation of action potentials generated at ectopic axonal loci: hypothesis that axon terminals integrate local environmental signals, Brain Res Brain Res Rev. 21, 42–92 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. D. A. McCormick and D. Contreras, On the cellular and network bases of epileptic seizures, Annu Rev Physiol. 63, 815–46 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. M. Steriade, R. Curro Dossi and D. Contreras, Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (approximately 40 HZ) spike-bursts at approximately 1000 HZ during waking and rapid eye movement sleep, Neuroscience. 56, 1–9 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. C. Peyron, D. K. Tighe, A. N. van den Pol, L. de Lecea, H. C. Heller, J. G. Sutcliffe and T. S. Kilduff, Neurons containing hypocretin (orexin) project to multiple neuronal systems, J Neurosci. 18, 9996–10015 (1998).

    PubMed  CAS  Google Scholar 

  13. J. Fadel and A. Y. Deutch, Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area, Neuroscience. 111, 379–87 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. J. Fadel, M. Bubser and A. Y. Deutch, Differential activation of orexin neurons by antipsychotic drugs associated with weight gain, J Neurosci. 22, 6742–6 (2002).

    PubMed  CAS  Google Scholar 

  15. J. G. Sutcliffe and L. de Lecea, The hypocretins: setting the arousal threshold, Nat Rev Neurosci. 3, 339–49(2002).

    Article  PubMed  CAS  Google Scholar 

  16. L. Bayer, E. Eggermann, B. Saint-Mleux, D. Machard, B. E. Jones, M. Muhlethaler and M. Serafin, Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons, J Neurosci. 22, 7835–9 (2002).

    PubMed  CAS  Google Scholar 

  17. J. N. Marcus, C. J. Aschkenasi, C. E. Lee, R. M. Chemelli, C. B. Saper, M. Yanagisawa and J. K. Elmquist, Differential expression of orexin receptors 1 and 2 in the rat brain, J Comp Neurol. 435, 6–25 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. P. Trivedi, H. Yu, D. J. MacNeil, L. H. Van der Ploeg and X. M. Guan, Distribution of orexin receptor mRNA in the rat brain, FEBS Lett. 438, 71–5 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. R. Brown, O. Sergeeva, K. Eriksson and H. Haas, Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat., Neuropharmacolgy. 40, 457–459 (2001).

    Article  CAS  Google Scholar 

  20. K. S. Eriksson, O. Sergeeva, R. E. Brown and H. L. Haas, Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus, J Neurosci. 21, 9273–9 (2001).

    PubMed  CAS  Google Scholar 

  21. R. Liu, A. van den Pol and G. Aghajanian, Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions., J Neurosci. 22, 9453–9464 (2002).

    PubMed  CAS  Google Scholar 

  22. M. Wu, Z. Zhang, C. Leranth, C. Xu, A. van den Pol and M. Alreja, Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition., J Neurosci. 22, 7754–7765 (2002).

    PubMed  CAS  Google Scholar 

  23. D. Burdakov, B. Liss and F. Ashcroft, Orexin excites GABAergic neurons of the arcuate nucleus by activating the sodium—calcium exchanger., J Neurosci. 23, 4951–4947 (2003).

    PubMed  CAS  Google Scholar 

  24. E. Lambe and G. Aghajanian, Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice., Neuron. 40, 139–150 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. G. J. Marek, R. A. Wright, J. C. Gewirtz and D. D. Schoepp, A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex, Neuroscience. 105, 379–92 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. E. Tanaka and R. A. North, Opioid actions on rat anterior cingulate cortex neurons in vitro, J Neurosci. 14, 1106–13 (1994).

    PubMed  CAS  Google Scholar 

  27. L. I. Kiyashchenko, B. Y. Mileykovskiy, N. Maidment, H. A. Lam, M. F. Wu, J. John, J. Peever and J. M. Siegel, Release of hypocretin (orexin) during waking and sleep states, J Neurosci. 22, 5282–6 (2002).

    PubMed  CAS  Google Scholar 

  28. M. F. Wu, J. John, N. Maidment, H. A. Lam and J. M. Siegel, Hypocretin release in normal and narcoleptic dogs after food and sleep deprivation, eating, and movement, Am J Physiol Regul Integr Comp Physiol. 283, R1079–86 (2002).

    PubMed  Google Scholar 

  29. Y. Yoshida, N. Fujiki, T. Nakajima, B. Ripley, H. Matsumura, H. Yoneda, E. Mignot and S. Nishino, Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities, Eur J Neurosci. 14, 1075–81 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. M. Rieger, G. Mayer and S. Gauggel, Attention deficits in patients with narcolepsy, Sleep. 26, 36–43 (2003).

    PubMed  Google Scholar 

  31. A. Naumann, J. Bierbrauer, H. Przuntek and I. Daum, Attentive and preattentive processing in narcolepsy as revealed by event-related potentials (ERPs), Neuroreport. 12, 2807–11 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. E. K. Lambe, M. R. Picciotto and G. K. Aghajanian, Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex, Neuropsychopharmacology. 28, 216–25 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. B. Hahn, M. Shoaib and I. P. Stolerman, Involvement of the prefrontal cortex but not the dorsal hippocampus in the attention-enhancing effects of nicotine in rats, Psychopharmacology (Berl). (2003).

    Google Scholar 

  34. G. J. Marek and G. K. Aghajanian, 5-Hydroxytryptamine-induced excitatory postsynaptic currents in neocortical layer V pyramidal cells: suppression by mu-opiate receptor activation., Neuroscience. 86, 485–497 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. G. J. Marek and G. K. Aghajanian, 5-HT2A receptor or alpha1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex., Eur J Pharmacol. 367, 197–206 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. E. K. Lambe and G. K. Aghajanian, The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex, J Neurosci. 21, 9955–63 (2001).

    PubMed  CAS  Google Scholar 

  37. G. E. Stutzmann, G. J. Marek and G. K. Aghajanian, Adenosine preferentially suppresses serotonin2A receptor-enhanced excitatory postsynaptic currents in layer V neurons of the rat medial prefrontal cortex., Neuroscience. 105, 55–69 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. G. J. Marek, R. A. Wright, D. D. Schoepp, J. A. Monn and G. Aghajanian, Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex., J Pharmacol Exp Ther. 292, 76–87 (2000).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Lambe, E.K., Aghajanian, G.K. (2005). Effects Of Hypocretin/Orexin on the Thalamocortical Activating System. In: de Lecea, L., Sutcliffe, J.G. (eds) Hypocretins. Springer, Boston, MA. https://doi.org/10.1007/0-387-25446-3_12

Download citation

Publish with us

Policies and ethics