Skip to main content

Collimator-Detector Response Compensation in SPECT

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Metz C. E., The geometric transfer function component for scintillation camera collimators with straight parallel holes. Phys Med Biol 25: 10591059–1070 (1980).

    Article  Google Scholar 

  2. Tsui B. M. W. and Gullberg, G. T., The geometric transfer-function for cone and fan beam collimators. Phys Med Biol 35: 81–93 (1990).

    Article  Google Scholar 

  3. Frey E. C., Tsui, B.M.W. and Gullberg, G. T., Improved estimation of the detector response function for converging beam collimators. Phys Med Biol 43: 941–950 (1998).

    Article  Google Scholar 

  4. Formiconi A. R., Geometrical response of multihole collimators. Phys Med Biol 43: 3359–3379 (1998).

    Article  Google Scholar 

  5. Formiconi A. R., Passeri, A. and Calvini, P., Theoretical determination of the collimator geometrical transfer function for the reconstruction of SPECT data. IEEE Trans Nucl Sci 46: 1075–1080 (1999).

    Article  ADS  Google Scholar 

  6. De Vries D. J., Moore, S. C., Zimmerman, R. E. et al., Development and validation of a Monte Carlo simulation of photon transport in an Anger camera. EEE Trans Med Imaging 9: 430–438 (1990).

    Article  Google Scholar 

  7. Du Y., Frey, E. C., Wang, W. T. et al., Combination of MCNP and SimSET for Monte Carlo simulation of SPECT with medium-and high-energy photons. IEEE Trans Nucl Sci 49: 668–674 (2002).

    Article  ADS  Google Scholar 

  8. Wilderman S. J., Dewaraja, Y. and Koral, K. F., Accurate modeling of nuclearmedicine collimators in Monte Carlo simulation of high-energy photons. Nucl Instr Meth A 422: 745–750 (1999).

    Article  ADS  Google Scholar 

  9. Wang W. T., Frey, E. C., Tsui, B. M. W. et al., Parameterization of Pb X-ray contamination in simultaneous Tl-201 and Tc-99m dual-isotope imaging. IEEE Trans Nucl Sci 49: 680–692 (2002).

    Article  ADS  Google Scholar 

  10. King M. A., Doherty, P. W., Schwinger, R. B. et al., Fast count-dependent digital filtering of nuclear medicine images: concise communication. J Nucl Med 24: 1039–1045 (1983).

    Google Scholar 

  11. King M. A., Penney, B. C. and Glick, S. J., An image-dependent Metz filter for nuclear medicine images. J Nucl Med 29: 19801980–1989 (1988).

    Google Scholar 

  12. King M. A., Doherty, P. W., Schwinger, R. B. et al., A Wiener filter for nuclear medicine images. Med Phys 10: 876–880 (1983).

    Article  Google Scholar 

  13. King M. A., Schwinger, R. B., Doherty, P. W. et al., Two-dimensional filtering of SPECT images using the Metz and Wiener filters. J Nucl Med 25: 1234–1240 (1984).

    Google Scholar 

  14. Riederer S. J., Pelc, N. J. and Chesler, D. A., Noise power spectrum in computed x-ray tomography. Phys Med Biol 23: 446–454 (1978).

    Article  Google Scholar 

  15. Hanson K. M. and Boyd, D. P., Characteristics of computed tomographic reconstruction noise and their effect on detectability. IEEE Trans Nucl Sci 25: 160–163 (1978).

    Article  ADS  Google Scholar 

  16. Edholm P. R., Lewitt, R. M. and Lindholm, B., Novel properties of the Fourier decomposition of the sinogram. SPIE Proceedings 671: 88–18 (1986).

    Google Scholar 

  17. Xia W. S., Lewitt, R. M. and Edholm, P. R., Fourier correction for spatially variant collimator blurring in SPECT. IEEE Trans Med Imaging 14: 100–115 (1995).

    Article  Google Scholar 

  18. Lewitt R. M., Edholm, P. R. and Xia, W., Fourier method for correction of depth dependent collimator blurring. SPIE Proceedings 1092: 232–243 (1989).

    ADS  Google Scholar 

  19. Glick S. J., Penney, B. C. and King, M. A., Non-iterative compensation for the distance-dependent detector response and photon attenuation in SPECT imaging. IEEE Trans Med Imaging 13: 363–374 (1994).

    Article  Google Scholar 

  20. Soares E. J., Glick, S. J. and King, M. A., Noise characterization of combined bellini-type attenuation correction and frequency-distance principle restoration filtering. IEEE Trans Nucl Sci 43: 3278–3290 (1996).

    Article  ADS  Google Scholar 

  21. Appledorn C. R., “An Analytical solution to the nonstationary reconstruction problem in single photon emission computed tomography. Prog Clin Biol Res 363: 69–79 (1991).

    Google Scholar 

  22. Soares E. J., Byrne, C. L., Glick, S. J. et al., Implementation and evaluation of an analytical solution to the photon attenuation and nonstationary resolution reconstruction problem in SPECT. IEEE Trans Nucl Sci 40: 1231–1237 (1993).

    Google Scholar 

  23. van Elmbt L. and Walrand, S., Simultaneous correction of attenuation and distance-dependent resolution in SPECT-an analytical approach. Phys Med Biol 38: 1207–1217 (1993).

    Article  Google Scholar 

  24. Bellini S., Piacentini, M., Cafforia, C. et al., Compensation of tissue absorption in emission tomography. IEEE Trans ASSP 27: 213–318 (1979).

    Article  Google Scholar 

  25. Pan X. and Metz, C. E., A Class of analytical methods that compensate for attenuation and spatially-variant resolution in 2D SPECT. IEEE Trans Nucl Sci 43: 2244–2254 (1996).

    Article  ADS  Google Scholar 

  26. Wang W. T., Tsui, B. M. W., Frey, E. C. et al., “Comparison of an analytical and an iterative based collimator-detector response compensation method in SPECT”, Conf Rec of IEEE Nuclear Science Symposium, Vol. 2; pp 1382–1386 (1998).

    Google Scholar 

  27. Wang W. T., “An Evaluation of an Analytical Collimator-Detector Response Compensation Method in SPECT,” Masters Thesis, The University of North Carolina, 1999.

    Google Scholar 

  28. Shepp L. A. and Vardi, Y., Maximum likelihood estimation for emission tomography. IEEE Trans Med Imaging 1: 113–121 (1982).

    Article  Google Scholar 

  29. Tsui B. M. W., Hu, H. B., Gilland, D. R. et al., Implementation of simultaneous attenuation and detector response correction in SPECT. IEEE Trans Nucl Sci 35: 778–783 (1988).

    Article  ADS  Google Scholar 

  30. McCarthy A. W. and Miller, M. I., Maximum-Likelihood SPECT in clinical computation times using mesh-connected parallel computers. IEEE Trans Med Imaging 10: 426–436 (1991).

    Article  Google Scholar 

  31. Zeng G. L. and Gullberg, G. T., Frequency domain implementation of the three-dimensional geometric point source correction in SPECT imaging. IEEE Trans Nucl Sci 39: 1444–1453 (1992).

    Article  ADS  Google Scholar 

  32. Frey E. C., Ju, Z.-W. and Tsui, B. M. W., A fast projector-backprojector pair modeling the asymmetric, spatially varying scatter response function for scatter compensation in SPECT imaging. IEEE Trans Nucl Sci 40: 1192–1197 (1993).

    Article  ADS  Google Scholar 

  33. Wallis J. W. and Miller, T. R., An optimal rotator for iterative reconstruction. IEEE Trans Med Imaging 16: 118–122 (1997).

    Article  Google Scholar 

  34. DiBella E. V. R., Barclay, A. B., Eisner, R. L. et al., A comparison of rotation-based methods for iterative reconstruction algorithms. IEEE Trans Nucl Sci 43:3370–3376 (1996).

    Article  ADS  Google Scholar 

  35. Beekman F. J., Eijkman, E., Viergever, M. A. et al., Object shape dependent PSF model for SPECT imaging. IEEE Trans Nucl Sci 40: 31–39 (1993).

    Article  ADS  Google Scholar 

  36. Kohli V., King, M. A., Glick, S. J. et al., Comparison of frequency-distance relationship and Gaussian-diffusion-based methods of compensation for distance-dependent spatial resolution in SPECT imaging. Phys Med Biol 43:1025–1037 (1998).

    Article  Google Scholar 

  37. King M. A., Pan, T. S. and Luo, D. S., An investigation of aliasing with Gaussian-diffusion modeling of SPECT system spatial resolution. IEEE Trans Nucl Sci 44: 1375–1380 (1997).

    Article  ADS  Google Scholar 

  38. Tsui B. M. W., Frey, E. C., Zhao, X. D. et al., The importance and implementation of accurate three-dimensional compensation methods for quantitative SPECT. Phys Med Biol 39: 509–530 (1994).

    Article  Google Scholar 

  39. Wilson D. W., “Noise and Resolution Properties of FB and ML-EM Reconstructed SPECT Images,” Ph.D Dissertation, University of North Carolina at Chapel Hill, 1994.

    Google Scholar 

  40. Tsui B. M. W., Zhao, X. D., Frey, E. C. et al., “Characteristics of reconstructed point response in three-dimensional spatially variant detector response compensation in SPECT” in: Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, edited by P. Grangeat and J-L Amans Kluwer Academic Publishers, (1996), pp 509–530.

    Google Scholar 

  41. Wilson D. W. and Barrett, H. H., The effects of incorrect modeling on noise and resolution properties of ML-EM images. IEEE Trans Nucl Sci 49: 768–773 (2002).

    Article  ADS  Google Scholar 

  42. Pretorius P. H., King, M. A., Pan, T. S. et al., Reducing the influence of the partial volume effect on SPECT activity quantitation with 3D modelling of spatial resolution in iterative reconstruction. Phys Med Biol 43: 407–420 (1998).

    Article  Google Scholar 

  43. Kohli V., King, M. A., Pan, T.-S. et al., Compensation for distance-dependent resolution in cardiac-perfusion SPECT: impact on uniformity of wall counts and wall thickness. IEEE Trans Nucl Sci 45: 1104–1110 (1998).

    Article  ADS  Google Scholar 

  44. Ljungberg M., Sjogreen, K., Liu, X. W. et al., A 3-dimensional absorbed dose calculation method based on quantitative SPECT for radionuclide therapy: Evaluation for I-131 using Monte Carlo simulation. J Nucl Med 43: 1101–1109 (2002).

    Google Scholar 

  45. Ljungberg M., Frey, E., Sjogreen, K. et al., 3D absorbed dose calculations based on SPECT: Evaluation for 111-In/90-Y therapy using Monte Carlo simulations. Cancer Biother Radiopharm 18: 99–107 (2003).

    Article  Google Scholar 

  46. Pretorius P. H., Gifford, H. C., Narayanan, M. V. et al., Comparison of detection accuracy of perfusion defects in SPECT for different reconstruction strategies using polar-map quantitation. IEEE Trans Nucl Sci 50: 1569–1574 (2003).

    Article  ADS  Google Scholar 

  47. Narayanan M. V., King, M. A., Pretorius, P. H. et al., Human-observer receiver-operating-characteristic evaluation of attenuation, scatter, and resolution compensation strategies for Tc-99m myocardial perfusion imaging. J Nucl Med 44: 1725–1734 (2003).

    Google Scholar 

  48. Sankaran S., Frey, E. C., Gilland, K. L. et al., Optimum compensation method and filter cutoff frequency in myocardial SPECT: A human observer study. J Nucl Med 43: 432–438 (2002).

    Google Scholar 

  49. Gifford H. C., King, M. A., Wells, R. G. et al., LROC analysis of detector-response compensation in SPECT. IEEE Trans Med Imaging 19: 463–473 (2000).

    Article  Google Scholar 

  50. Frey E. C., Gilland, K. L. and Tsui, B. M. W., Application of task-based measures of image quality to optimization and evaluation of three-dimensional reconstruction-based compensation methods in myocardial perfusion SPECT. IEEE Trans Med Imaging 21: 1040–1050 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Frey, E.C., Tsui, B.M.W. (2006). Collimator-Detector Response Compensation in SPECT. In: Zaidi, H. (eds) Quantitative Analysis in Nuclear Medicine Imaging. Springer, Boston, MA. https://doi.org/10.1007/0-387-25444-7_5

Download citation

Publish with us

Policies and ethics