Skip to main content

Spike Timing Dependent Plasticity of Rat Hippocampal and Cortical Synapses and Control by Muscarinic Transmission

  • Chapter
  • 678 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarbanel HD, Huerta R, Rabinovich MI (2002) Dynamical model of long-term synaptic plasticity, Proc Natl Acad Sci U S A 99: 10132–7.

    Article  PubMed  CAS  Google Scholar 

  • Adams SV, Winterer J, Müller W (2004) Muscarinic signaling is required for spike-pairing induction of long-term potentiation at rat Schaffer collateral-CA1 synapses, Hippocampus 14: 413–6.

    Article  PubMed  CAS  Google Scholar 

  • Alberi S, Boeijinga PH, Raggenbass M, and Boddeke HW (2000) Involvement of calmodulin-dependent protein kinase II in carbachol-induced rhythmic activity in the hippocampus of the rat, Brain Res 872: 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Barrionuevo G, Schottler F, Lynch G (1980) The effects of repetitive low frequency stimulation on control and “potentiated” synaptic responses in the hippocampus, Life Sci 27: 2385–91.

    Article  PubMed  CAS  Google Scholar 

  • Bekkers JM (2000) Properties of voltage-gated potassium currents in nucleated patches from large layer 5 cortical pyramidal neurons of the rat, J Physiol 525: 593–609.

    Article  PubMed  CAS  Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex, J Neurosci 2: 32–48.

    PubMed  CAS  Google Scholar 

  • Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J Physiol 232: 331–56.

    PubMed  CAS  Google Scholar 

  • Blitzer RD, Gil O, Landau EM (1990) Cholinergic stimulation enhances long-term potentiation in the CA1 region of rat hippocampus, Neurosci Lett 119: 207–210.

    Article  PubMed  CAS  Google Scholar 

  • Burgard EC, Sarvey JM (1990) Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus, Neurosci Lett 116: 34–39.

    Article  PubMed  CAS  Google Scholar 

  • Cole AE, Nicoll RA (1984) Characterization of a slow cholinergic post-synaptic potential recorded in vitro from rat hippocampal pyramidal cells, J Physiol Lond 352: 173–188.

    PubMed  CAS  Google Scholar 

  • Davies CH, Starkey SJ, Pozza MF, Collingridge GL (1991) GABA autoreceptors regulate the induction of LTP, Nature 349: 609–11.

    Article  PubMed  CAS  Google Scholar 

  • Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus, J Neurosci 13: 2910–8.

    PubMed  CAS  Google Scholar 

  • Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex, Nat Neurosci 2: 1098–105.

    Article  PubMed  CAS  Google Scholar 

  • Egorov AV, Gloveli T, Müller W (1999) Muscarinic Control of Dendritic Excitability and Ca(2+) Signaling in CA1 Pyramidal Neurons in Rat Hippocampal Slice, J. Neurophysiol. 82: 1909–1915.

    PubMed  CAS  Google Scholar 

  • Egorov AV, Müller W (1999) Subcellular muscarinic enhancement of excitability and Ca2+-signals in CA1-dendrites in rat hippocampal slice, Neurosci Lett 261: 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Emptage N, Bliss TV, Fine A (1999) Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines, Neuron 22: 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Froemke RC, Dan Y (2003) Spike-timing-dependent synaptic modification induced by natural spike trains, Nature 416: 433–8.

    Article  CAS  Google Scholar 

  • Gloveli T, Egorov AV, Schmitz D, Heinemann U, Müller W (1999) Carbachol-induced changes in excitability and [Ca2+]i signalling in projection cells of medial entorhinal cortex layers II and III, Eur J. Neurosci. 11: 3626–3636.

    CAS  Google Scholar 

  • Grover LM, Teyler TJ (1990) Two components of long-term potentiation induced by different patterns of afferent activation, Nature 347: 477–9.

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson B, Wigstrom H, Abraham WC, Huang YY (1987) Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials, J Neurosci 7: 774–80.

    PubMed  CAS  Google Scholar 

  • Hoffman DA, Johnston D (1999) Neuromodulation of dendritic action potentials, J Neurophysiol 81: 408–411.

    PubMed  CAS  Google Scholar 

  • Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons, Nature 387: 869–875.

    Article  PubMed  CAS  Google Scholar 

  • Huerta PT, Lisman JE (1993) Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state, Nature 364: 723–725.

    Article  PubMed  CAS  Google Scholar 

  • Huerta PT, Lisman JE (1995) Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro, Neuron 15: 1053–1063.

    Article  PubMed  CAS  Google Scholar 

  • Karmarkar UR, Najarian MT, Buonomano DV (2002) Mechanisms and significance of spike-timing dependent plasticity, Biol Cybern 87: 373–82.

    Article  PubMed  Google Scholar 

  • Koester HJ, Sakmann B (1998) Calcium dynamics in single spines during coincident pre-and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials, Proc Natl Acad Sci U S A 95: 9596–601.

    Article  PubMed  CAS  Google Scholar 

  • Korngreen A, Sakmann B (2000) Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients, J Physiol 525: 621–39.

    Article  PubMed  CAS  Google Scholar 

  • Larkum ME, Zhu JJ, Sakmann B (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons, J Physiol 533: 447–66.

    Article  PubMed  CAS  Google Scholar 

  • Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus, Neuroscience 8: 791–7.

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Yuan LL, Johnston D, Gray R (2002) Calcium signaling at single mossy fiber presynaptic terminals in the rat hippocampus, J Neurophysiol 87: 1132–7.

    PubMed  CAS  Google Scholar 

  • Lisman JE (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory, Proc Natl Acad Sci U S A 86: 9574–9578.

    Article  PubMed  CAS  Google Scholar 

  • Lynch GS, Dunwiddie T, Gribkoff V (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation, Nature 266: 737–9.

    Article  PubMed  CAS  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons, Science 275: 209–13.

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs, Science 275: 213–215.

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Segal M (1992) The inositol 1,4,5-trisphosphate pathway mediates cholinergic potentiation of rat hippocampal neuronal responses to NMDA, J Physiol Lond 447: 513–533.

    PubMed  CAS  Google Scholar 

  • Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons, Nature 382: 807–810.

    Article  PubMed  CAS  Google Scholar 

  • Misgeld U, Müller W, Polder HR (1989) Potentiation and suppression by eserine of muscarinic synaptic transmission in the guinea-pig hippocampal slice, J Physiol Lond 409: 191–206.

    PubMed  CAS  Google Scholar 

  • Mott DD, Lewis DV (1991) Facilitation of the induction of long-term potentiation by GABAB receptors, Science 252: 1718–20.

    PubMed  CAS  Google Scholar 

  • Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus, Neuron 9: 967–975.

    Article  PubMed  CAS  Google Scholar 

  • Müller W, Brunner H, Misgeld U (1989) Lithium discriminates between muscarinic receptor subtypes on guinea pig hippocampal neurons in vitro, Neurosci Lett 100: 135–140.

    Article  PubMed  Google Scholar 

  • Müller W, Connor JA (1991a) Cholinergic input uncouples Ca2+ changes from K+ conductance activation and amplifies intradendritic Ca2+ changes in hippocampal neurons, Neuron 6: 901–905.

    Article  PubMed  Google Scholar 

  • Müller W, Connor JA (1991b) Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses, Nature 354: 73–76.

    Article  PubMed  Google Scholar 

  • Müller W, Misgeld U (1986) Slow cholinergic excitation of guinea pig hippocampal neurons is mediated by two muscarinic receptor subtypes, Neurosci Lett 67: 107–112.

    Article  PubMed  Google Scholar 

  • Müller W, Misgeld U, Heinemann U (1988) Carbachol effects on hippocampal neurons in vitro: dependence on the rate of rise of carbachol tissue concentration, Exp Brain Res 72: 287–298.

    Article  PubMed  Google Scholar 

  • Müller W, Petrozzino JJ, Griffith LC, Danho W, Connor JA (1992) Specific involvement of Ca(2+)-calmodulin kinase II in cholinergic modulation of neuronal responsiveness, J Neurophysiol 68: 2264–2269.

    PubMed  Google Scholar 

  • Nakajima Y, Nakajima S, Leonard RJ, Yamaguchi Y (1986) Acetylcholine raises excitability by inhibiting the fast transient potassium current in cultured hippocampal neurons, Proc Natl Acad Sci U S A 83: 3022–3026.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Nakamura K, Lasser RN, Barbara JG, Sandler VM, Ross WN (2000) Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release evoked by metabotropic agonists and backpropagating action potentials in hippocampal CA1 pyramidal neurons, J Neurosci 20: 8365–8376.

    PubMed  CAS  Google Scholar 

  • Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification, Nature 408: 584–8.

    Article  PubMed  CAS  Google Scholar 

  • Pan E, Colbert CM (2001) Subthreshold inactivation of Na+ and K+ channels supports activity-dependent enhancement of back-propagating action potentials in hippocampal CA1, J Neurophysiol 85: 1013–6.

    PubMed  CAS  Google Scholar 

  • Pare D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo, J Neurophysiol 79: 1450–60.

    PubMed  CAS  Google Scholar 

  • Pedarzani P, Storm JF (1996) Evidence that Ca/calmodulin-dependent protein kinase mediates the modulation of the Ca2+-dependent K+ current, IAHP, by acetylcholine, but not by glutamate, in hippocampal neurons, Pflugers Arch 431: 723–728.

    PubMed  CAS  Google Scholar 

  • Perkel DJ, Petrozzino JJ, Nicoll RA, Connor JA (1993) The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation, Neuron 11: 817–823.

    Article  PubMed  CAS  Google Scholar 

  • Regehr WG, Tank DW (1990) Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites, Nature 345: 807–810.60

    Article  PubMed  CAS  Google Scholar 

  • Reyes M, Stanton PK (1996) Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores, J Neurosci 16: 5951–5960.

    PubMed  CAS  Google Scholar 

  • Royer S, Pare D (2003) Conservation of total synaptic weight through balanced synaptic depression and potentiation, Nature 422: 518–22.

    Article  PubMed  CAS  Google Scholar 

  • Sabatini, BL, Oertner TG, Svoboda K (2002) The life cycle of Ca(2+) ions in dendritic spines, Neuron 33: 439–452.

    Article  PubMed  CAS  Google Scholar 

  • Segal M, Manor D (1992) Confocal microscopic imaging of [Ca2+]i in cultured rat hippocampal neurons following exposure to N-methyl-D-aspartate, J Physiol (Lond) 448: 655–676.

    PubMed  CAS  Google Scholar 

  • Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity, Proc Natl Acad Sci U S A 99: 10831–6. Epub 2002 Jul 22.

    Article  PubMed  CAS  Google Scholar 

  • Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity, Neuron 32: 1149–64.

    Article  PubMed  CAS  Google Scholar 

  • Stanton PK, Sejnowski TJ (1989) Associative long-term depression in the hippocampus induced by hebbian covariance, Nature 339: 215–8.

    Article  PubMed  CAS  Google Scholar 

  • Stuart GJ, Hausser M (2001) Dendritic coincidence detection of EPSPs and action potentials, Nat Neurosci 4: 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Tsubokawa H, Offermanns S, Simon M, Kano M (2000) Calcium-dependent persistent facilitation of spike backpropagation in the CA1 pyramidal neurons, J Neurosci 20: 4878–4884.

    PubMed  CAS  Google Scholar 

  • Tsubokawa H, Ross WN (1996) IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons, J Neurophysiol 76: 2896–2906.

    PubMed  CAS  Google Scholar 

  • Tsubokawa H, Ross WN (1997) Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons, J Neurosci 17: 5782–5791.

    PubMed  CAS  Google Scholar 

  • Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration, Nature 375: 682–684.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Müller, W., Winterer, J., Stanton, P.K. (2005). Spike Timing Dependent Plasticity of Rat Hippocampal and Cortical Synapses and Control by Muscarinic Transmission. In: Stanton, P.K., Bramham, C., Scharfman, H.E. (eds) Synaptic Plasticity and Transsynaptic Signaling. Springer, Boston, MA. https://doi.org/10.1007/0-387-25443-9_3

Download citation

Publish with us

Policies and ethics