Skip to main content

Concluding Remarks: New Paradigms in Excitotoxicity

Given the emerging pathogenic role played by intracellular Zn2+ accumulation in neuronal death and the fact that the ion seems to promote injury with greater potency compared to Ca2+, Zn2+ may be an underappreciated mediator of excitotoxicity, which has for the most part been thought of as a purely Ca2+-dependent phenomenon. Moreover, the deleterious effects of cytosolic [Ca2+]i increases in ischemia should perhaps be reevaluated in light of emerging data regarding the Ca2+ dependence of intracellular mobilization of Zn2+. The observation that intracellular Zn2+ release from mitochondria is particularly prominent in the case of large, glutamate-evoked [Ca2+]i rises, coupled with the likely probability that Ca2+-induced mitochondrial ROS generation would also promote Zn2+ release from MTs, offers the possibility of a more complex injury paradigm than previously imagined. In such a model, glutamate-driven [Ca2+]i rises might actually serve as an “accomplice” to spark the release of the true ionic mediator of neuronal damage: Zn2+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Aizenman E, Stout AK, Hartnett KA, Dineley KE, Mclaughlin B, Reynolds IJ (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release, J Neurochem 75:1878–1888.

    PubMed  CAS  Google Scholar 

  • Aniksztejn L, Charton G, Ben-Ari Y (1987) Selective release of endogenous zinc from the hippocampal mossy fibers in situ, Brain Res 404:58–64.

    PubMed  CAS  Google Scholar 

  • Aravindakumar CT, Ceulemans J, De Ley M (1999) Nitric oxide induces Zn2+ release from metallothionein by destroying zinc-sulphur clusters without concomitant formation of S-nitrosothiol, Biochem J 344:253–258.

    PubMed  CAS  Google Scholar 

  • Arseniev A, Schultze P, Worgotter E, Braun W, Wagner G, Vasak M, Kagi JH, Wuthrich K (1988) Three-dimensional structure of rabbit liver [Cd7]metallothionein-2a in aqueous solution determined by nuclear magnetic resonance, J Mol Biol 201:637–657.

    PubMed  CAS  Google Scholar 

  • Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity, Nature 308:734–736.

    PubMed  CAS  Google Scholar 

  • Beckmann AM, Wilce PA (1997) Egr transcription factors in the nervous system, Neurochem Int 31:477–510.

    PubMed  CAS  Google Scholar 

  • Bennett MVL, Pellegrini-Giampietro DE, Gorter JA, Aronica E, Connor JA, Zukin RS (1996) The GluR2 hypothesis: Ca2+-permeable AMPA receptors in delayed neurodegeneration, Cold Spring Harbor Symposia Quantitative Biology 61:373–384.

    CAS  Google Scholar 

  • Bossy-Wetzel E, Talantova MV, Lee WD, Scholzke MN, Harrop A, Mathews E, Gotz T, Han J, Ellisman MH, Perkins GA, Lipton SA (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels, Neuron 41:351–365.

    PubMed  CAS  Google Scholar 

  • Brierley GP, Knight VA (1967) Ion transport by heart mitochondria. X. The uptake and release of Zn2+ and its relation to the energy-linked accumulation of magnesium, Biochemistry 6:3892–3901.

    PubMed  CAS  Google Scholar 

  • Brown AM, Kristal BS, Effron MS, Shestopalov AI, Ullucci PA, Sheu KFR, Blass JP, Cooper AJL (2000) Zn2+ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex., J Biol Chem 275:13441–13447.

    PubMed  CAS  Google Scholar 

  • Canzoniero LM, Sensi SL, Choi DW (1996) Recovery from NMDA-induced intracellular acidification is delayed and dependent on extracellular bicarbonate, Am J Physiol 270:593–599.

    Google Scholar 

  • Canzoniero LM, Turetsky DM, Choi DW (1999) Measurement of intracellular free zinc concentrations accompanying zinc-induced neuronal death, J Neurosci 19(RC31):1–6.

    Google Scholar 

  • Chen Y, Irie Y., Keung WM, Maret W (2002) S-Nitrosothiols React Preferentially with Zinc Thiolate Clusters of Metallothionein III through Transnitrosation, Biochemistry 41:8360–8367.

    PubMed  CAS  Google Scholar 

  • Cheng C, Reynolds IJ (1998) Calcium-sensitive fluorescent dyes can report increases in intracellular free zinc concentration in cultured forebrain neurons, J Neurochem 71:2401–2410.

    PubMed  CAS  Google Scholar 

  • Choi DW, Yokoyama M, Koh J (1988) Zinc neurotoxicity in cortical cell culture, Neurosci 24:67–79.

    CAS  Google Scholar 

  • Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene, Proc Natl Acad Sci USA 96:1716–1721.

    PubMed  CAS  Google Scholar 

  • Cole TB, Robbins CA, Wenzel HJ, Schwartzkroin PA, Palmiter RD (2000) Seizures and neuronal damage in mice lacking vesicular zinc, Epilepsy Res 39:153–169.

    PubMed  CAS  Google Scholar 

  • Cole TB, Martyanova A, Palmiter RD (2001) Removing zinc from synaptic vesicles does not impair spatial learning, memory, or sensorimotor functions in the mouse, Brain Res 891:253–265.

    PubMed  CAS  Google Scholar 

  • Colvin RA (2002) pH dependence and compartmentalization of zinc transported across plasma membrane of rat cortical neurons, Am J Physiol Cell Physiol 282:C317–329.

    PubMed  CAS  Google Scholar 

  • Colvin RA, Fontaine CP, Laskowski M, Thomas D (2003) Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol 479:171–185.

    PubMed  CAS  Google Scholar 

  • Cuajungco MP, Lees GJ (1998) Nitric oxide generators produce accumulation of chelatable zinc in hippocampal neuronal perikarya, Brain Res 799:118–129.

    PubMed  CAS  Google Scholar 

  • Dineley KE, Brocard JB, Reynolds IJ (2002) Elevated intracellular zinc and altered proton homeostasis in forebrain neurons, Neurosci 114:439–449.

    CAS  Google Scholar 

  • Dineley KE, Votyakova TV, Reynolds IJ (2003) Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration, J Neurochem 85:563–570.

    PubMed  CAS  Google Scholar 

  • Du L, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC, Graham SH, Carcillo JA, Szabo C, Clark RSB (2003) Intra-mitochondrial Poly(ADP-ribosylation) Contributes to NAD+ Depletion and Cell Death Induced by Oxidative Stress, J Biol Chem 278:18426–18433.

    PubMed  CAS  Google Scholar 

  • Ebadi M, Leuschen MP, El Refaey H, Hamada FM, Rojas P (1996) The antioxidant properties of zinc and metallothionein, Neurochem Int 29:159–166.

    PubMed  CAS  Google Scholar 

  • Eide DJ (2003) Multiple regulatory mechanisms maintain zinc homeostasis in Saccharomyces cerevisiae, J Nutr 133:1532S–1535.

    PubMed  CAS  Google Scholar 

  • Erickson JC, Hollopeter G, Thomas SA, Froelick GJ, Palmiter RD (1997) Disruption of the metallothionein-III gene in mice: analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures, J Neurosci 17:1271–1281.

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Hernandez MD, Goik SA, Morton JD, Mcginty JF (1988) Loss of zinc staining from hippocampal mossy fibers during kainic acid induced seizures: a histofluorescence study, Brain Res 446:383–386.

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Hernandez MD, Mcginty JF (1989) Translocation of zinc may contribute to seizure-induced death of neurons, Brain Res 480:317–321.

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Bush AI (2001) Synaptically released zinc: Physiological functions and pathological effects, BioMetals 14:353–366.

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Cuajungco MP, Labuda CJ, Suh SW (2002) Nitric oxide causes apparent release of zinc from presynaptic boutons, Neuroscience 115:471–474.

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Suh SW, Koh JY, Cha YK, Thompson RB, Labuda CJ, Balaji RV, Cuajungco MP (2002) Depletion of intracellular zinc from neurons by use of an extracellular chelator in vivo and in vitro, J Histochem Cytochem 50:1659–1662.

    PubMed  CAS  Google Scholar 

  • Gazaryan IG, Krasnikov BF, G. A. Ashby GA, Thorneley RN, Kristal BS, Brown AM (2002) Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase, J Biol Chem 277:10064–10072.

    PubMed  CAS  Google Scholar 

  • Gorter JA, Petrozzino JJ, Aronica EM, Rosenbaum DM, Opitz T, Bennett MVL, Connor JA, Zukin RS (1997) Global ischemia induces downregulation of Glur2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CAI neurons of gerbil, J Neurosci 17:6179–6188.

    PubMed  CAS  Google Scholar 

  • Hershfinkel M, Moran A, Grossman N, Sekler I (2001) A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport, Proc Natl Acad Sci USA 98:11749–1175.

    PubMed  CAS  Google Scholar 

  • Hidalgo J, Aschner M, Zatta P, Vasak M (2001) Roles of the metallothionein family of proteins in the central nervous system, Brain Res Bull 55:133–145.

    PubMed  CAS  Google Scholar 

  • Holtz ML, Craddock SD, Pettigrew LC (2001) Rapid expression of neuronal and inducible nitric oxide synthases during post-ischemic reperfusion in rat brain, Brain Res 898:49–60.

    PubMed  CAS  Google Scholar 

  • Howell GA, Welch G, and Frederickson CJ (1984) Stimulation-induced uptake and release of zinc in hippocampal slices, Nature 308:736–738.

    PubMed  CAS  Google Scholar 

  • Ikeda T, Kimura K, Morioka S, Tamaki N (1980) Inhibitory effects of Zn2+ on muscle glycolysis and their reversal by histidine, J Nutr Sci Vitaminol (Tokyo) 26:357–366.

    PubMed  CAS  Google Scholar 

  • Itoh M, Ebadi M (1982) The selective inhibition of hippocampal glutamic acid decarboxylase in zinc-induced epileptic seizures, Neurochem Res 7:1287–1298.

    PubMed  CAS  Google Scholar 

  • Jacob C, Maret W, Vallee BL (1998) Control of zinc transfer between thionein, metallothionein, and zinc proteins, Proc Natl Acad Sci USA 95:3489–3494.

    PubMed  CAS  Google Scholar 

  • Jia Y, Jeng JM, Sensi SL, Weiss JH (2002) Zn2+ currents are mediated by calcium-permeable AMPA/kainate channels in cultured murine hippocampal neurones, J Physiol (Lond) 543:35–48.

    PubMed  CAS  Google Scholar 

  • Jeng JM, Jia Y, Bonanni L, Weiss JH (2002) Divergent effects of pH on Zn2+ and Ca2+ flux through Ca2+-permeable AMPA/kainate channels (CAKR), Soc Neurosci Abstr 29:539.

    Google Scholar 

  • Jiang LJ, Maret W, Vallee BL (1998) The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase, Proc Natl Acad Sci USA 95:3483–3488.

    PubMed  CAS  Google Scholar 

  • Jiang LJ, Vasak M, Vallee BL, Maret W (2000) Zinc transfer potentials of the alpha-and beta-clusters of metallothionein are affected by domain interactions in the whole molecule, Proc Natl Acad Sci USA 97:2503–2508.

    PubMed  CAS  Google Scholar 

  • Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH (2001) Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria, J Biol Chem 276:47524–47529.

    PubMed  CAS  Google Scholar 

  • Kägi JHR (1993) In: Metallothionein III, Biological Roles and Medical Implications, Suzuki KT, Imura N, Kimura M, Eds. (Birkhäuser Verlag, Basel), pp. 29–56.

    Google Scholar 

  • Kerchner G, Canzoniero L, Yu S, Ling C, Choi DW (2000) Zn2+ current is mediated by voltage-gated Ca2+ channels and enhanced by extracellular acidity in mouse cortical neurones, J Physiol 528:39–52.

    PubMed  CAS  Google Scholar 

  • Kim YH, Kim EY, Gwag BJ, Sohn S, Koh JY (1999) Zinc-induced cortical neuronal death with features of apoptosis and necrosis: mediation by free radicals, Neurosci 89:175–182.

    CAS  Google Scholar 

  • Kim TY, Hwang JJ, Yun SH, Jung MW, Koh JY (2002) Augmentation by zinc of NMDA receptor-mediated synaptic responses in CA1 of rat hippocampal slices: mediation by Src family tyrosine kinases, Synapse 46:49–56.

    PubMed  CAS  Google Scholar 

  • Kim Y-H, Koh J-Y (2002) The role of NADPH oxidase and neuronal nitric oxide synthase in zinc induced poly(ADP-ribose) polymerase activation and cell death in cortical culture, Exp Neurol 177:407–418.

    PubMed  CAS  Google Scholar 

  • Kleiner D, Von Jagow G (1972) On the inhibition of mitochondrial electron transport by Zn(2+) ions, FEBS Lett 20:229–232.

    PubMed  CAS  Google Scholar 

  • Kleiner D (1974) The effect of Zn2+ ions on mitochondrial electron transport, Arch Biochem Biophys 165:121–125.

    PubMed  CAS  Google Scholar 

  • Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia, Science 272:1013–1016.

    PubMed  CAS  Google Scholar 

  • Kokaia Z, Andsberg G, Martinez-Serrano A, Lindvall O (1998) Focal cerebral ischemia in rats induces expression of P75 neurotrophin receptor in resistant striatal cholinergic neurons, Neurosci 84:1113–1125.

    CAS  Google Scholar 

  • Korichneva I, Hoyos B, Chua R, Levi E, Hammerling U (2002) Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen, J Biol Chem 277:44327–44331.

    PubMed  CAS  Google Scholar 

  • Kroncke KD, Fehsel K, Schmidt T, Zenke FT, Dasting I, Wesener JR, Bettermann H, Breunig KD, Kolb-Bachofen V (1994) Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9, Biochem Biophys Res Commun 200:1105–1110.

    PubMed  CAS  Google Scholar 

  • Krotkiewska B, Banas T (1992) Interaction of Zn2+ and Cu2+ ions with glyceraldehyde-3-phosphate dehydrogenase from bovine heart and rabbit muscle, Int J Biochem 24:1501–1505.

    PubMed  CAS  Google Scholar 

  • Kukimoto I, Hoshino S, Kontani K, Inageda K, Nishina H, Takahashi K, Katada T (1996) Stimulation of ADP-ribosyl cyclase activity of the cell surface antigen CD38 by zinc ions resulting from inhibition of its NAD+ glycohydrolase activity, Eur J Biochem 239:177–182.

    PubMed  CAS  Google Scholar 

  • Lee TH, Abe K, Kogure K, Itoyama Y (1995) Expressions of nerve growth factor and p75 low affinity receptor after transient forebrain ischemia in gerbil hippocampal CA1 neurons, J Neurosci Res 41:684–695.

    PubMed  CAS  Google Scholar 

  • Lee JY, Cole TB, Palmiter RD, Koh JY (2000) Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin, J Neurosci 20:RC79.

    PubMed  CAS  Google Scholar 

  • Lee JY, Kim YH, Koh JY (2001) Protection by pyruvate against transient forebrain ischemia in rats, J Neurosci 21:RC171, 1–6.

    PubMed  CAS  Google Scholar 

  • Lee JM, Zipfel GJ, Park KH, He YY, Hsu CY, Choi DW (2002) Zinc translocation accelerates infarction after mild transient focal ischemia, Neurosci 115:871–878.

    CAS  Google Scholar 

  • Lee JY, Kim JH, Palmiter RD, Koh JY (2003) Zinc released from metallothionein-III may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury, Exp Neurol 184:337–347.

    PubMed  CAS  Google Scholar 

  • Lerma J, Morales M, Ibarz JM, Somohano F (1994) Rectification properties and Ca2+ permeability of glutamate receptor channels in hippocampal cells, Eur J Neurosci 6:1080–1088.

    PubMed  CAS  Google Scholar 

  • Link TA, Von Jagow G (1995) Zinc ions inhibit the QP center of bovine heart mitochondrial bc1 complex by blocking a protonatable group, J Biol Chem 270:25001–25006.

    PubMed  CAS  Google Scholar 

  • Lipton P (1999) Ischemic Cell Death in Brain Neurons, Physiol Rev 79:1431–1568.

    PubMed  CAS  Google Scholar 

  • Lobner D, Canzoniero LM, Manzerra P, Gottron F, Ying H, Knudson M, Tian M, Dugan LL, Kerchner GA, Sheline CT, Korsmeyer SJ, Choi DW (2000) Zinc-induced neuronal death in cortical neurons, Cell Mol Biol (Noisy-le-grand) 46:797–806.

    PubMed  CAS  Google Scholar 

  • Lopantsev V, Wenzel HJ, Cole TB, Palmiter RD, Schwartzkroin PA (2003) Lack of vesicular zinc in mossy fibers does not affect synaptic excitability of CA3 pyramidal cells in zinc transporter 3 knockout mice, Neurosci 116:237–248.

    CAS  Google Scholar 

  • Lorusso M, Cocco T, Sardanelli AM, Minuto M, Bonomi F, Papa S. (1991) Interaction of Zn2+ with the bovine-heart mitochondrial bc1 complex, Eur J Biochem 197:555–561.

    PubMed  CAS  Google Scholar 

  • Maret W (1994) Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange, Proc Natl Acad Sci USA 91:237–241.

    PubMed  CAS  Google Scholar 

  • Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters, Proc Natl Acad Sci USA 95:3478–3482.

    PubMed  CAS  Google Scholar 

  • McLaughlin B, Pal S, Tran MP, Parsons AA, Barone FC, Erhardt JA, Aizenman E (2001) p38 Activation Is Required Upstream of Potassium Current Enhancement and Caspase Cleavage in Thiol Oxidant-Induced Neuronal Apoptosis, J. Neurosci. 21:3303–3311.

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Budd SL (2000) Mitochondria and Neuronal Survival Physiol Rev. 80:315–360.

    CAS  Google Scholar 

  • Nicholls P, Malviya AN (1968) Inhibition of nonphosphorylating electron transfer by zinc. The problem of delineating interaction sites, Biochemistry 7:305–310.

    PubMed  CAS  Google Scholar 

  • Nicotera P, Leist M, Ferrando-May E (1999) Apoptosis and necrosis: different execution of the same death, Biochem Soc Symp 66.

    Google Scholar 

  • Noh KM, Kim YH, Koh JY (1999) Mediation by membrane protein kinase C of zinc-induced oxidative neuronal injury in mouse cortical cultures, J Neurochem 72:1609–1616.

    PubMed  CAS  Google Scholar 

  • Ohana E, Segal D, Palty R, Ton-That D, Moran A, Sensi SL, Weiss JH, Hershfinkel M, Sekler I (2004) A sodium zinc exchange mechanism is mediating extrusion of zinc in mammalian cells, J Biol Chem 279:4278–4284.

    PubMed  CAS  Google Scholar 

  • Opitz T, Grooms SY, Bennett MVL, Zukin RS (2000) Remodeling of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit composition in hippocampal neurons after global ischemia, Proc Natl Acad Sci USA 97:13360–13365.

    PubMed  CAS  Google Scholar 

  • Packer L, Tritschler HJ, Wessel K (1997) Neuroprotection by the Metabolic Antioxidant Lipoic Acid, Free Radical Biology and Medicine 22:359–378.

    PubMed  CAS  Google Scholar 

  • Palmiter RD, Huang L (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers, Pflugers Archiv 447:744–751.

    PubMed  CAS  Google Scholar 

  • Park JA, Koh JY (1999) Induction of an Immediate Early Gene egr-1 by Zinc Through Extracellular Signal-Regulated Kinase Activation in Cortical Culture, J Neurochem 73:450–456.

    PubMed  CAS  Google Scholar 

  • Park JA, Lee JY, Sato TA, Koh JY (2000) Co-induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat, J Neurosci 20:9096–9103.

    PubMed  CAS  Google Scholar 

  • Pellegrini-Giampietro DE, Gorter JA, Bennett MV, Zukin RS (1997) The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders, Trends Neurosci 20:464–470.

    PubMed  CAS  Google Scholar 

  • Persechini A, McMillan K, Masters BS (1995) Inhibition of nitric oxide synthase activity by Zn2+ ion, Biochemistry 34:15091–15095.

    PubMed  CAS  Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann Neurol 11:491–498.

    PubMed  CAS  Google Scholar 

  • Robbins AH, Mcree DE, Williamson M, Collett SA, Xuong NH, Furey WF, Wang BC, Stout CD (1991) Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution, J Mol Biol 221:1269–1293.

    PubMed  CAS  Google Scholar 

  • Saris NE, Niva K (1994) Is Zn2+ transported by the mitochondrial calcium uniporter?, FEBS Lett 356:195–198.

    PubMed  CAS  Google Scholar 

  • Schwiening CJ, Boron WF (1994) Regulation of intracellular pH in pyramidal neurones from the rat hippocampus by Na(+)-dependent Cl(-)-HCO3-exchange, J Physiol 475:59–67.

    PubMed  CAS  Google Scholar 

  • Sensi SL, Canzoniero LM, Yu SP, Ying HS, Koh JY, Kerchner GA, Choi DW (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry, J Neurosci 17:9554–9564.

    PubMed  CAS  Google Scholar 

  • Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH (1999) Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production, Proc Natl Acad Sci U S A 96:2414–2419.

    PubMed  CAS  Google Scholar 

  • Sensi SL, Yin HZ, Weiss JH (1999) Glutamate triggers preferential Zn2+ flux through Ca2+ permeable AMPA channels and consequent ROS production, Neuroreport 10:1723–1727.

    PubMed  CAS  Google Scholar 

  • Sensi SL, Yin HZ, Weiss JH (2000) AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction, Eur J Neurosci 12:3813–3818.

    PubMed  CAS  Google Scholar 

  • Sensi SL, Ton-That D, Weiss JH (2002) Mitochondrial sequestration and Ca(2+)-dependent release of cytosolic Zn(2+) loads in cortical neurons, Neurobiol Dis 10:100–108.

    PubMed  CAS  Google Scholar 

  • Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH (2003) Modulation of mitochondrial function by endogenous Zn2+ pools, Proc Natl Acad Sci USA 100:6157–6162.

    PubMed  CAS  Google Scholar 

  • Sheline CT, Behrens MM, Choi DW (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis, J Neurosci 20:3139–3146.

    PubMed  CAS  Google Scholar 

  • Skulachev VP, Chistyakov VV, Jasaitis AA, Smirnova EG (1967) Inhibition of the respiratory chain by zinc ions, Biochem Biophys Res Commun 26:1–6.

    PubMed  CAS  Google Scholar 

  • Sloviter RS (1985) A selective loss of hippocampal mossy fiber Timm stain accompanies granule cell seizure activity induced by perforant path stimulation, Brian Res 330:150–153.

    CAS  Google Scholar 

  • Suh SW, Chen JW, Motamedi M, Bell B, Listiak K, Pons NF, Danscher G, Frederickson CJ (2000) Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury, Brain Res 852:268–273.

    PubMed  CAS  Google Scholar 

  • Tang C, Dichter M, Morad M (1990) Modulation of the N-Methyl-D-Aspartate Channel by Extracellular H+, Proc Natl Acad Sci USA 87:6445–6449.

    PubMed  CAS  Google Scholar 

  • Tonder N, Johansen FF, Frederickson CJ, Zimmer J, Diemer NH (1990) Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat, Neurosci Lett 109:247–252.

    PubMed  CAS  Google Scholar 

  • Traynelis S, Cull-Candy S (1991) Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones, J Physiol (Lond) 433:727–763.

    PubMed  CAS  Google Scholar 

  • Trendelenburg G, Prass GK, Priller J, Kapinya K, Polley A, Muselmann C, Ruscher K, Kannbley U, Schmitt AO, Castell S, Wiegand F (2002) A. Meisel, A. Rosenthal, and U. Dirnagl, Serial Analysis of Gene Expression Identifies Metallothionein-II as Major Neuroprotective Gene in Mouse Focal Cerebral Ischemia, J Neurosci 22:5879–5888.

    PubMed  CAS  Google Scholar 

  • Turetsky DM, Canzoniero LMT, Sensi SL, Weiss JH, Goldberg MP, Choi DW (1994) Cortical neurones exhibiting kainate-activated Co2+uptake are selectively vulnerable to AMPA/kainate receptor-mediated toxicity, Neurobiology of Disease 1:101–110.

    PubMed  CAS  Google Scholar 

  • Van Lookeren Campagne M, Thibodeaux H, Van Bruggen N, Cairns B, Gerlai R, Palmer JT, Williams SP, Lowe DG (1999) Evidence for a protective role of metallothionein-1 in focal cerebral ischemia, Proc Natl Acad Sci USA 96:12870–12875.

    PubMed  Google Scholar 

  • Wallace DC (1999) Mitochondrial Diseases in Man and Mouse, Science 283:1482–1488.

    PubMed  CAS  Google Scholar 

  • Weiss JH, Hartley DM, Koh JY, Choi DW (1993) AMPA receptor activation potentiates zinc neurotoxicity, Neuron 10:43–49.

    PubMed  CAS  Google Scholar 

  • Wudarczyk J, Debska G, Lenartowicz E (1999) Zinc as an inducer of the membrane permeability transition in rat liver mitochondria, Arch Biochem Biophys 363:1–8.

    PubMed  CAS  Google Scholar 

  • Yin HZ, Weiss JH (1995) Zn(2+) permeates Ca(2+) permeable AMPA/kainate channels and triggers selective neural injury, Neuroreport 6:2553–2556.

    PubMed  CAS  Google Scholar 

  • Yin HZ, Sensi SL, Carriedo SG, Weiss JH (1999) Dendritic localization of Ca2+-permeable AMPA/kainate channels in hippocampal pyramidal neurons, J Comp Neurol 409:250–260.

    PubMed  CAS  Google Scholar 

  • Yin HZ, Sensi SL, Ogoshi F, Weiss JH (2002) Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons, J Neurosci 22:1273–1279.

    PubMed  CAS  Google Scholar 

  • Ying W, Han SK, Miller JW, Swanson RA (1999) Acidosis potentiates oxidative neuronal death by multiple mechanisms, J Neurochem 73:1549–1556.

    PubMed  CAS  Google Scholar 

  • Yokoyama M, Koh J, Choi DW (1986) Brief exposure to zinc is toxic to cortical neurons, Neurosci Lett 71:351–355.

    PubMed  CAS  Google Scholar 

  • Yu SP, Canzoniero LM, Choi DW (2001) Ion homeostasis and apoptosis, Curr Opin Cell Biol 13:405–411.

    PubMed  CAS  Google Scholar 

  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of Poly(ADP-Ribose) Polymerase-1-Dependent Cell Death by Apoptosis-Inducing Factor, Science 297:259–263.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Jeng, JM., Sensi, S.L. (2005). Zinc Dyshomeostasis in Neuronal Injury. In: Stanton, P.K., Bramham, C., Scharfman, H.E. (eds) Synaptic Plasticity and Transsynaptic Signaling. Springer, Boston, MA. https://doi.org/10.1007/0-387-25443-9_10

Download citation

Publish with us

Policies and ethics