Skip to main content

Focal Cerebral Ischemia: Clinical Studies

  • Chapter
Therapeutic Hypothermia

Abstract

Acute ischemic stroke is a major leading cause of death and disability throughout the developed world. Although early vascular reperfusion improves the clinical outcome, fewer than 5% of patients with acute ischemic stroke actually receive thrombolytic therapy. The challenge of thrombolytic therapy is that, with time, the ability to recover brain tissue decreases rapidly while vulnerability to reperfusion injury increases. The result of this quandary, a narrow time-window, proved to be the stumbling block in wider dissemination of this treatment. Conceivably, co-administration of a “tissue protectant” could enhance the effectiveness of thrombolysis while expanding the time window and reducing the risks of reperfusion. A promising candidate to serve this purpose is hypothermia. A wealth of animal experiments have demonstrated that hypothermia or simply fever prevention diminishes ischemic damage with transient occlusion followed by reperfusion. In models of permanent occlusion, reduction of infarct size was less impressive (1, 2). In transient ischemia models, hypothermia was most effective when administered during the period of vascular occlusion (intra-ischemic) or immediately after vascular reperfusion (post-ischemic) (35). According to these models, hypothermia is efficacious in concert with reperfusion in only a narrow time window. Some investigations suggest that more prolonged periods of hypothermia enhance the benefit of early post-ischemic induction and even may have benefit after permanent occlusion. Consequently, in patients with acute stroke, therapeutic hypothermia will more likely confer benefit in conjunction with early vascular reperfusion and when applied over prolonged periods of time. The use of antipyretic agents has not been shown to effectively reduce core temperature after stroke, although, post-stroke fever can be inhibited. Therapeutic mild (33–36°C) to moderate (28–32°C) hypothermia can be achieved by surface cooling (external cooling) or by using intravenous counter-current heat exchange (endovascular cooling). External cooling is almost invariably associated with imprecise timing and continuation of the hypothermic effect. With endovascular cooling heat is directly removed from, or added to, the thermal core, thus bypassing the heat sink and insulating effects of peripheral tissues. Several early open and controlled studies have shown that endovascular cooling is safe and can effectively manage core temperatures in the mild to moderate hypothermic range. This review of clinical studies will address the advances in the understanding of mechanisms by which hypothermia enhances stroke outcomes and how these insights may help to translate benefits of hypothermia from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morikawa E, Ginsberg MD, Dietrich WD et al. The significance of brain temperature in focal cerebral ischemia: Histopathological consequences of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 1992; 12:380–389.

    PubMed  CAS  Google Scholar 

  2. Ridenour TR, Warner DS, Todd MM, McAllister AC. Mild hypothermia reduces infarct size resulting from temporary but not permanent focal ischemia in rats. Stroke 1992; 23:733–738.

    PubMed  CAS  Google Scholar 

  3. Maier CM, Ahern K, Cheng ML, et al. Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia. Effects on neurologic outcome, infarct size, apoptosis, and inflammation. Stroke 1998; 29:2171–2180.

    PubMed  CAS  Google Scholar 

  4. Yanamoto H, Nagata I, Nakahara I et al. Combination of intraischemic and postischemic hypothermia provides potent and persistent neuroprotection against temporary focal ischemia in rats. Stroke 1999; 30:2720–2726.

    PubMed  CAS  Google Scholar 

  5. Maier CM, Sun G, Kunis D, et al. Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurological outcome and infarct size. J Neurosurg 2001; 94:90–96.

    PubMed  CAS  Google Scholar 

  6. Zivin JA. Factors determining the therapeutic window for stroke. Neurology 1998; 50:599–603.

    PubMed  CAS  Google Scholar 

  7. Heiss WD, Thiel A, Grond M, Graf R. Which targets are relevant for therapy of acute ischemic stroke? Stroke 1999; 30:1486–1489.

    PubMed  CAS  Google Scholar 

  8. Furlan A, Higashida R, Wechsler L, et al. Intra-arterial prourokinase for acute ischemic stroke: the PROACT II study: a randomized controlled trial. JAMA 1999; 282:2003–2011.

    Article  PubMed  CAS  Google Scholar 

  9. Del Zoppo GJ, Higashida RT, Furlan AJ, et al. PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. Stroke 1998; 29:4–11.

    PubMed  Google Scholar 

  10. Fieschi C, Argentino C, Lenzi GL, et al. Clinical and instrumental evaluation of patients with ischemic stroke within the first six hours. J Neurol Sci 1989; 91:311–321.

    Article  PubMed  CAS  Google Scholar 

  11. Wolpert SM, Bruckmann H, Greenlee R, et al. Neuroradiologic evaluation of patients with acute stroke treated with recombinant tissue plasminogen activator. Am J Neuroradiol 1993; 14:3–13.

    PubMed  CAS  Google Scholar 

  12. Sherman DG, Easton JD, Kagan-Hallet KS. Spectrum of pathology responsible for ischemic stroke. In: Moore WS, ed. Surgery for cerebrovascular disease. Philadelphia: W.B. Saunders, 1996: pp 43–47.

    Google Scholar 

  13. Bock RW, Lusby RJ. Lesions, dynamics, and pathogenetic mechanisms responsible for ischemic events in the brain. In: Moore WS, ed. Surgery for cerebrovascular disease. Philadelphia: W.B. Saunders, 1996: pp 48–71.

    Google Scholar 

  14. Rosenblum WI. Histopathologic clues to the pathways of neuronal death following ischemia/hypoxia. J Neurotrauma 1997; 14:313–326

    PubMed  CAS  Google Scholar 

  15. Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature 1999; 399:Suppl:A7–A14.

    PubMed  CAS  Google Scholar 

  16. Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke 1998, 29:705–718.

    PubMed  CAS  Google Scholar 

  17. Nagesh V, Welch KM, Windham JP, et al. Time course of ADCw changes in ischemic stroke: beyond the human eye! Stroke 1998; 29:1778–1782.

    PubMed  CAS  Google Scholar 

  18. Baron J. Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis 1999; 9:193–201.

    Article  PubMed  CAS  Google Scholar 

  19. Jones TH, Morawetz RB, Crowell RM, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 1981; 54:773–782

    PubMed  CAS  Google Scholar 

  20. Aronowski J, Strong R, Grotta JC. Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab 1997; 17:1048–1056.

    Article  PubMed  CAS  Google Scholar 

  21. Kawai N, Okauchi M, Morisaki K, Nagao S. Effects of delayed intraischemic and postischemic hypothermia on a focal model of transient cerebral ischemia in rats. Stroke 2000; 31:1982–1989.

    PubMed  CAS  Google Scholar 

  22. Szabo, C., and Dawson, V.L. Role of poly (ADP-ribose) synthetase inflammation and ischaemia-reperfusion. Trends Pharmacol. Sci 1998; 19:287–298.

    Article  PubMed  CAS  Google Scholar 

  23. Hamann GF, Okada Y, del Zoppo GJ. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J Cereb Blood Flow Metab 1996; 16:1373–1378.

    Article  PubMed  CAS  Google Scholar 

  24. Hamann GF, Okada Y, Fitridge R, del Zoppo GJ. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke 1995; 26:2120–2126.

    PubMed  CAS  Google Scholar 

  25. Yurchenco PD, Schittny JC. Molecular architecture of basement membranes. FASEB J 1990; 4:1577–1590.

    PubMed  CAS  Google Scholar 

  26. Del Zoppo GJ, von Kummer R, Hamann GF. Ischaemic damage of brain microvessels: inherent risks for thrombolytic treatment in stroke. J Neur, Neurosurg & Psych 1998; 65:1–9.

    Google Scholar 

  27. Hamann GF, del Zoppo GJ, von Kummer R. Hemorrhagic transformation of cerebral infarction-possible mechanisms. Thromb Haemost 1999; 82(Suppl.):92–94.

    PubMed  Google Scholar 

  28. Petty MA, Wettstein JG. Elements of cerebral microvascular ischaemia. Brain Res Rev 2001; 36:23–34.

    Article  PubMed  CAS  Google Scholar 

  29. Reith J, Jørgensen MS, Pedersen PM, et al. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet 1996; 347:422–425.

    Article  PubMed  CAS  Google Scholar 

  30. Naritomi H, Shimizu T, Oe H, et al. Mild hypothermia in acute embolic stroke: a pilot study. J Stroke and Cereb Dis 1996; 6:193–196.

    Google Scholar 

  31. Shimizu T, Naritomi H, Kakud W, et al. Mild hypothermia is effective for the treatment of acute embolic stroke if induced within 24 hours after onset but not in the later phase. J Cereb Blood Flow Metab 1997; 17:42.

    Google Scholar 

  32. Krieger DW, DeGeorgia M, Abou-Chebl A, et al. Cooling for acute ischemic brain damage (COOL AID): an open pilot study of induced hypothermia in acute ischemic stroke. Stroke 2001; 32:1847–1854.

    PubMed  CAS  Google Scholar 

  33. Schwab S, Schwarz S, Spranger M, et al. Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction. Stroke 1998; 29:2461–2466

    PubMed  CAS  Google Scholar 

  34. Schwab S, Georgiadis D, Berrouschot J, et al. Feasibility and Safety of Moderate Hypothermia After Massive Hemispheric Infarction. Stroke 2001; 32:2033–2035

    PubMed  CAS  Google Scholar 

  35. Michenfelder J. Protecting the brain. In: Michenfelder J. ed. Anesthesia & the Brain. Clinical, Functional, Metabolic and Vascular Correlates. 1st Ed. Churchill Livingstone, USA, 1988: pp 181–193.

    Google Scholar 

  36. Hajat C, Hajat S, Sharma P. Effects of post stroke pyrexia on stroke outcome: a meta-analysis of studies in patients. Stroke 2000; 31:410–414.

    PubMed  CAS  Google Scholar 

  37. Busto R, Dietrich WD, Globus MY-T et al. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 1987; 7:729–738.

    PubMed  CAS  Google Scholar 

  38. Kammersgaard LP, Rasmussen BH, Jørgensen HS, et al. Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling. Stroke 2000; 31:2251–2256.

    PubMed  CAS  Google Scholar 

  39. Boysen G, Christensen H. Stroke severity determines body temperature in acute stroke. Stroke 2001; 32:413–417.

    PubMed  CAS  Google Scholar 

  40. Naritomi H, Nagatsuka K, Miyashita K, et al. The importance of thermal changes in the pathophysiology of stroke: post-stroke fever and hypothermia therapy. In: Kikuchi H (Ed) Strategic Medical Science Against Brain Attack. Springer Verlag, Tokyo 2002: pp 171–185.

    Google Scholar 

  41. Zhang Y-H, Hosono T, Yanase-Fujiwara M, et al. Effect of midbrain stimulation on thermoregulatory vasomotor response in rats. J Physiol 1997; 503:177–186.

    Article  PubMed  CAS  Google Scholar 

  42. He Z, Yamawaki T, Yang S, et al. Experimental model of small deep infarcts involving the hypothalamus in rats. Changes in body temperature and postural reflex. Stroke 1999; 30:2743–2751.

    PubMed  CAS  Google Scholar 

  43. Dippel DWJ, Van Breda EJ, Van Gemert HMA, et al. Effect of paracetamol (acetaminophen) on body temperature in acute ischemic stroke. A double-blind, randomized phase II clinical trial. Stroke 2001; 32:1607–1612.

    PubMed  CAS  Google Scholar 

  44. Kasner SE, Wein T, Piriyawat P, et al. Acetaminophen for altering body temperature in acute stroke. A randomized clinical trial. Stroke 2002; 33:130–135.

    Article  PubMed  CAS  Google Scholar 

  45. Kammersgaard L, Rasmussen B, Jorgensen H, et al. Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling. Stroke 2000; 31:2251–2256.

    PubMed  CAS  Google Scholar 

  46. Hacke W, Schwab S, Horn M, et al. Malignant middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol 1996; 53:309–315.

    PubMed  CAS  Google Scholar 

  47. Frank JI. Large hemispheric infarction, deterioration, and intracranial pressure. Neurology 1995; 45:1286–1290.

    PubMed  CAS  Google Scholar 

  48. Schwab S, Spranger M, Schwarz S, Hacke W. Barbiturate coma in severe hemispheric stroke: useful or obsolete? Neurology 1997; 48:1608–1613.

    PubMed  CAS  Google Scholar 

  49. Rieke K, Schwab S, Krieger D, et al. Decompressive surgery in space-occupying hemispheric infarction: results of an open, prospective trial. Crit Care Med 1995; 23:1576–1587.

    Article  PubMed  CAS  Google Scholar 

  50. Schwab S, Steiner T, Aschoff A, et al. Early hemicraniectomy in patients with complete middle cerebral artery infarction. Stroke 1998; 29:1888–1893.

    PubMed  CAS  Google Scholar 

  51. Faraday N, Rosenfeld BA. In vitro hypothermia enhances platelet GPIIb-IIIa activation and P-selectin expression. Anesthesiolog 1998; 88:1579–1585.

    Article  CAS  Google Scholar 

  52. Watts DD, Trask A, Soeken K, et al. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma 1998; 44:846–854.

    Article  PubMed  CAS  Google Scholar 

  53. Yenari MA, Palmer JT, Bracci P, Steinberg GK. Thrombolysis with Tissue plasminogen activator (tpa) is temperature dependent. Thromb Res 1995; 77:475–481.

    Article  PubMed  CAS  Google Scholar 

  54. Schwarzenberg H, Muller-Hulsbeck S, Brossman J et al. Hyperthermic fibrinolysis with rt-PA: in vitro results. Cardiovasc Intervent Radiol 1998; 21:142–145.

    Article  PubMed  CAS  Google Scholar 

  55. Meden P, Overgaard K, Pedersen H, Boysen G. Effect of hypothermia and delayed thrombolysis in a rat embolic stroke model. Acta Neurol Scand 1994; 90:91–98.

    Article  PubMed  CAS  Google Scholar 

  56. Chair KM, Gao DW, Dae MW. Influence of Mild Hypothermia on Tissue Plasminogen Activator-induced Clot Lysis in Carotid Thrombosis. Presentation at TCT 2002, the annual meeting of Transcatheter Cardiovascular Therapeutics.

    Google Scholar 

  57. Georgiadis D, Schwarz S, Kollmar R, Schwab S. Endovascular Cooling for Moderate Hypothermia in Patients With Acute Stroke First Results of a Novel Approach. Stroke 2001; 32:2550–2553.

    PubMed  CAS  Google Scholar 

  58. Dixon SR, Whitbourn RJ, Dae MW, et al. Induction of Mild Systemic Hypothermia With Endovascular Cooling During Primary Percutaneous Coronary Intervention for Acute Myocardial Infarction. J Am Coll Cardiol 2002; 40:1928–1934.

    Article  PubMed  Google Scholar 

  59. Mokhtarani M, Mahgoub A, Morioka N, et al. Buspirone and meperidine synergistically reduce the shivering threshold. Anesth Analg 2001; 93:1233–1239.

    Article  PubMed  CAS  Google Scholar 

  60. DeGeorgia M, Krieger DW, Abou-Chebl A, et al. Cooling for Acute Ischemic Brain Damage (COOL AID): A Feasibility Trial of Endovascular Cooling. Neurology 2004; 63:312–317.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Krieger, D.W., Schwab, S., Kammersgard, L.P. (2005). Focal Cerebral Ischemia: Clinical Studies. In: Tisherman, S.A., Sterz, F. (eds) Therapeutic Hypothermia. Molecular and Cellular Biology of Critical Care Medicine, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-25403-X_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-25403-X_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25402-9

  • Online ISBN: 978-0-387-25403-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics