Skip to main content

Computational Algorithms in Small-Animal Imaging

  • Chapter
Small-Animal Spect Imaging

Abstract

High-resolution small-animal imaging has seen recent advances on a number of fronts, with significant improvements coming in areas of detector technology, electronics, and collimation. Perhaps less recognized have been the accompanying software developments which have facilitated these hardware gains, including new algorithms that allow for better camera resolution, algorithms for faster reconstruction, algorithms for reconstructing data collected from irregular geometries, and modeling algorithms to improve reconstruction and to facilitate system design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. H. Barrett, D.W. Wilson, and B. M.W. Tsui. “Noise properties of the EM algorithm: 1. Theory,” Phys. Med. Biol., vol. 39, pp. 833–846, 1994.

    Article  Google Scholar 

  2. J. W. Beck, R. J. Jaszczak, R. E. Coleman, C. F. Starmer, and L. W. Nolte. “Analysis of SPECT including scatter and attenuation using sophisticated Monte-Carlo modeling methods,” IEEE Trans. Nucl. Sci., vol. 29, pp. 506–511, 1982.

    Google Scholar 

  3. R.N. Bracewell. “Strip integration in astronomy,” Aust. J. Phys., vol. 9, pp. 198–217, 1956.

    MATH  MathSciNet  Google Scholar 

  4. A. E. Burgess. “Comparison of receiver operating characteristic and forced choice observer performance measurement methods,” Med. Phys., vol. 22, pp. 643–655, 1995.

    Article  Google Scholar 

  5. C. L. Byrne. “Iterative image reconstruction algorithms based on cross-entropy minimization,” IEEE Trans. Imag. Proc., vol. 9, pp. 96–103, March 1993.

    Article  MathSciNet  Google Scholar 

  6. E. Clarkson and H. H. Barrett. “A bound on null functions for digital imaging systems with positivity constraint,” Optics Letters, vol. 814–815, pp. 649–658, 1997.

    Google Scholar 

  7. E. Clarkson and H. H. Barrett. “Bounds on null functions of linear digital imaging systems,” J. Opt. Soc. Am. A, vol. 15, pp. 1355–1360, 1998.

    MathSciNet  Google Scholar 

  8. A. M. Cormack. “Representation of a function by its line integrals, with some radiologyical applications,” J. Appl. Phys., vol. 34, pp. 2722–2727, 1963.

    Article  MATH  Google Scholar 

  9. A. M. Cormack. “Representation of a function by its line integrals, with some radiologyical applications,” J. Appl. Phys., vol. 35, pp. 2908–2913, 1964.

    Article  MATH  Google Scholar 

  10. A. D. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood from incomplete data via the EM algorithm,” J. Royal Stat. Soc., vol. 39, pp. 1–38, 1977.

    MATH  MathSciNet  Google Scholar 

  11. L. A. Feldkamp, L. C. Davis, and J. W. Kress. “Practical conebeam algorithm,” J. Opt. Soc. Amer. A, vol. 1, pp. 612–619, 1984.

    Article  Google Scholar 

  12. L.R. Furenlid, D.W. Wilson, P. J. Pietraski, H.K. Kim, Y. Chen, and H. H. Barrett. “FastSPECT II: A second-generation high-resolution dynamic SPECT imager,” IEEE Trans. Nucl. Sci., in press.

    Google Scholar 

  13. B. D. Gallas and H. H. Barrett. “Validating the use of channels to estimate the ideal linear observer,” Journal of the Optical Society of America: A, vol. 20, pp. 1725–1738, 2003.

    Google Scholar 

  14. R. Gordon, R. Bender, and G. T. Herman. “Algebraic reconstruction techniques (ART) for 3-dimensional electron microscopy and x-ray photography,” J. Theoretical Biology, vol. 29, pp. 471–481, 1970.

    Article  Google Scholar 

  15. D.M. Green and J. A. Swets. Signal detection theory and psycophysics. Wiley, 1966.

    Google Scholar 

  16. P. J. Green. “Bayesian reconstructions from emission tomography data using amodified emalgorithm,” IEEE Trans. Med. Imag., vol. 9, pp. 84–93, 1990.

    Article  Google Scholar 

  17. E. J. Hoffman, P. D. Cutler, W. M. Digby, and J. C. Mazziotta. “2-D phantom to simulate cerebral blood flow and metabolic images for pet,” IEEE Trans. Nucl. Sci., vol. 37, pp. 616–620, 1990.

    Article  Google Scholar 

  18. H. M. Hudson and R. S. Larkin. “Accelerated image-reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imag., vol. 13, pp. 601–609, 1994.

    Article  Google Scholar 

  19. A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989.

    Google Scholar 

  20. R. J. Jaszczak, R. E. Coleman, and F. R. Whitehead. “Physical factors affecting quantitative measurements using camera-based single photonemission computed-tomography (SPECT),” IEEE Trans. Nucl. Sci., vol. 28, pp. 69–80, 1981.

    Google Scholar 

  21. P. E. Kinahan, S. Matej, J. S. Karp, G. T. Herman, and R. M. Lewitt. “A comparison of transform and iterative reconstruction techniques for a volume-imaging PET scanner with a large axial acceptance angle,” IEEE Trans. Nucl. Sci., vol. 42, pp. 2281–2287, 1995.

    Article  Google Scholar 

  22. M. King and T. Farncombe. “An overview of attenuation and scatter correction of planar and SPECT data for dosimetry studies,” Cancer biotherapy and radiopharmaceuticals, vol. 18, pp. 181–190, 2003.

    Article  Google Scholar 

  23. M.A. King, B.M.W. Tsui, and T. S. Pan. “Attenuation compensation for cardiac single-photon emission computed tomographic imaging 1. Impact of attenuation andmethods of estimating attenuation maps,” Journal of Nuclear Cardiology, vol. 2, pp. 513–524, 1995.

    Article  Google Scholar 

  24. L. Landweber. “An iterative formula for Fredholm integral equations of the first kind,” Amer. J. Math., vol. 73, pp. 615–624, 1951.

    Article  MATH  MathSciNet  Google Scholar 

  25. Z. Liang, T. G. Turkington, D. R. Gilland, R. J. Jaszczak, and R. E. Coleman. “Simultaneous compensation for attenuation, scatter and detector response for SPECT reconstruction in 3 dimensions,” Phys. Med. Biol., vol. 37, pp. 587–603, 1992a.

    Article  Google Scholar 

  26. Z. Liang, T. G. Turkington, D. R. Gilland, R. J. Jaszczak, and R. E. Coleman. “Simultaneous compensation for attenuation, scatter and detector response for SPECT reconstruction in 3 dimensions,” Physics in Medicine and Biology, vol. 37, pp. 587–603, 1992b.

    Article  Google Scholar 

  27. C. E. Metz. “Basic principles of ROC analysis,” Seminars in Nuclear Medicine, vol. 7, pp. 283–298, 1978.

    Google Scholar 

  28. C. E. Metz and X. C. Pan. “A unified analysis of exact methods of inverting the 2D exponential radon transform, with implications for noise control in SPECT,” IEEE Trans. Med. Imag., vol. 14, pp. 643–658, 1995.

    Article  Google Scholar 

  29. J. Radon. “On the determination of functions from their integrals along certain manifolds (translated),” Ber. Verbhandl. Sachs. Akad. Wiss. Leipzig Math-Phys. K1, vol. 69, pp. 262–277, 1917.

    Google Scholar 

  30. J. P. Rolland and H. H. Barrett. “Effect of random background inhomogeneity on observer detection performance,” J. Opt. Soc. Am. A, vol. 9, pp. 649–658, 1992.

    Google Scholar 

  31. G. D. Rosen, A. G. Williams, J. A. Capra, M. T. Connolly, B. Cruz, L. Lu, D. C. Airey, K. Kullcarni, and R. W. Williams. The mouse brain library@www.mbl.org. 2000.

    Google Scholar 

  32. M. S. Rosenthal, J. Cullom, W. Hawkins, S. C. Moore, B.M.W. Tsui, and M. Yester. “Quantitative SPECT imaging — a review and recommendations by the focus committee of the Society of Nuclear Medicine Computer and Instrumentation Council,” J. Nucl. Med., vol. 36, pp. 1489–1513, 1995.

    Google Scholar 

  33. L. Shepp and Y. Vardi. “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag., vol. 1, pp. 113–122, 1982.

    Article  Google Scholar 

  34. O. Tretiak and C. Metz. “The exponnential radontransform,” Siam. J. Appl. Math., vol. 39, pp. 341–354, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  35. B. M. W. Tsui, E. C. Frey, X. Zhao, D. S. Lalush, R. E. Johnston, and W. H. McCartney. “The importance and implementation of accurate 3D compensation methods for quantitative SPECT,” Phys. Med. Biol., vol. 39, pp. 509–530, March 1994.

    Article  Google Scholar 

  36. G. Wang, T. H. Lin, P. C. Cheng, and D. M. Shinozaki. “A general cone-beam reconstruction algorithm,” IEEE Trans. Med. Imag., vol. 12, pp. 486–496, 1993.

    Article  Google Scholar 

  37. A. Welch, G. T. Gullberg, P. E. Christian, F. L. Datz, and T. Morgan. “A transmission-map based scatter correction technique for SPECT in inhomogeneous-media,” Medical Physics, vol. 22, pp. 1627–1635, 1995.

    Article  Google Scholar 

  38. E. P. Wigner. “On the quantum correction for thermodynamic equilibrium,” Physics Review, vol. 40, pp. 749–759, 1933.

    Article  Google Scholar 

  39. D.W. Wilson, H. H. Barrett, and E.W. Clarkson. “Reconstruction of two-and three-dimensional images from synthetic-collimator data,” IEEE tTrans. Med. Imag., vol. 19, pp. 412–422, 2000.

    Article  Google Scholar 

  40. D.W. Wilson, H. H. Barrett, and B. M.W. Tsui. “Noise properties of the EM algorithm: 2. Monte Carlo simulations,” IEEE Trans. Med. Imag., vol. 13, pp. 601–609, 1994.

    Article  Google Scholar 

  41. D. W. Wilson and B. M. W. Tsui. “Noise properties of filtered backprojection and ML-EM reconstructed emission tomographic images,” IEEE Trans. Nucl. Sci., vol. 40, pp. 1198–1203, 1993a.

    Article  Google Scholar 

  42. D.W. Wilson and B.M.W. Tsui. “Spatial resolution and quantitation properties of fb and ML-EM reconstructed emission tomographic images,” Proceedings of the IEEEMedical ImagingConference, pp. 1189–1193, 1993b.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Wilson, D.W. (2005). Computational Algorithms in Small-Animal Imaging. In: Kupinski, M.A., Barrett, H.H. (eds) Small-Animal Spect Imaging. Springer, Boston, MA. https://doi.org/10.1007/0-387-25294-0_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-25294-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25143-1

  • Online ISBN: 978-0-387-25294-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics