Skip to main content

Detectors for Small-Animal SPECT I

Overview of Technologies

  • Chapter
Book cover Small-Animal Spect Imaging

Abstract

Indirect imaging systems such as SPECT have three essential components: an image-forming element, an image detector, and a reconstruction algorithm. These components act together to transfer information about the object to the end user or observer, which can be a human or a computer algorithm. As we shall see in Chapter 5, the efficacy of this information transfer can be quantified and used as a figure or merit for the overall imaging system or for any component of it. Fundamentally, image quality is defined by the ability of some observer to perform some task of medical or scientific interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. K. Abbey, H. H. Barrett, “Linear iterative reconstruction algorithms: Study of observer performance,” XIVth International Conference on Information Processing in Medical Imaging (IPMI), Ile de Berder, France, pp. 65–76, June 26–30, 1995.

    Google Scholar 

  2. C.K. Abbey, H.H. Barrett, D.W. Wilson, “Observer signal-to-noise ratios for the ML-EM algorithm,” Proc SPIE, vol. 2708, 1996.

    Google Scholar 

  3. R. Accorsi, F. Gasparini, R. C. Lanza, “A Coded Aperture for High-Resolution Nuclear Medicine Planar Imaging with a Conventional Anger Camera: experimental results,” IEEE Trans Nucl Sci, vol. 48, no. 6, pp. 2411–2417, December 2001a.

    Article  Google Scholar 

  4. R. Accorsi, F. Gasparini, R. C. Lanza, “Optimal Coded Patterns for Improved SNR in Nuclear Medicine Imaging,” Nucl Instr Meth Phys Res A, vol. 474, pp. 273–284, 2001b.

    Article  Google Scholar 

  5. H. H. Barrett, “Fresnel zone plate imaging in nuclear medicine,” J. Nucl Med, vol. 13, no. 6, pp. 382–385, 1972.

    Google Scholar 

  6. H.H. Barrett, W. Swindell, Radiological Imaging: Theory of Image Formation, Detection, and Processing, vols. I and II, New York, Academic Press, 1981.

    Google Scholar 

  7. H. H. Barrett, “Objective assessment of image quality: effects of quantum noise and object variability,” J. Opt Soc Am A, vol. 7, pp. 1266–1278, 1990.

    Google Scholar 

  8. H.H. Barrett, H. C. Gifford, “Cone-beam tomography with discrete data sets,” Phys Med Biol, vol. 39, pp. 451–476, 1994.

    Article  Google Scholar 

  9. H. H. Barrett, J. L. Denny, R. F. Wagner, K. J. Myers, “Objective assessment of image quality. II Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt Soc Am A, vol. 12, no. 5, pp. 834–852, 1995a.

    Google Scholar 

  10. H. H. Barrett, J. D. Eskin, H. B. Barber, “Charge transport in arrays of semiconductor gamma-ray detectors,” Phys Rev Lett, vol. 5, no. 1, pp. 156–159, 1995b.

    Article  Google Scholar 

  11. H. H. Barrett, J. L. Denny, H. C. Gifford, C. K. Abbey, “Generalized NEQ: Fourier analysis where you would least expect to find it,” Proc SPIE, vol. 2708, pp. 41–52, 1996a.

    Article  Google Scholar 

  12. H. H. Barrett, W. Swindell, Radiological Imaging: Theory of Image Formation, Detection, and Processing, Paperback edition, New York, Academic Press, 1996b.

    Google Scholar 

  13. H. H. Barrett, B. Gallas, E. Clarkson, A. Clough, “Scattered radiation in nuclear medicine: A case study in the Boltzmann transport equation,” Computational Radiology and Imaging: Therapy and Diagnosis, Borgers, C., Natterer, F. eds., Springer Verlag, 1998.

    Google Scholar 

  14. H. H. Barrett, K. J. Myers, Foundations of Image Science, New York, John Wiley and Sons, 2004.

    Google Scholar 

  15. A. J. Bird, T. Carter, A. J. Dean, D. Ramsden, B. M. Swinyard, “The optimisation of small CsI(Tl) gamma-ray detectors,” IEEE Trans Nucl Sci, vol. 40, no. 4, pp. 395–399, 1993.

    Article  Google Scholar 

  16. A. Breskin, A. Buzulutskov, R. Chechik, B. K. Singh, A. Bondar, L. Shekhtman, “Sealed GEM photomultiplier with a CsI photocathode,” Nucl Instr Meth Phys Res A, vol. 478, pp. 225–229, 2002.

    Article  Google Scholar 

  17. J. C. Chen, “Scatter Rejection in Gamma Cameras for Use in Nuclear Medicine,” Biomed Eng Appl Basis Comm, vol. 9, pp. 20–26, 1997.

    Google Scholar 

  18. Y. H. Chung, Y. Choi, G. Cho, Y. S. Choe, K.-H. Lee, B.-T. Kim, “Optimization of Dual Layer Phoswich Detector Consisting of LSO and LuYAP for Small Animal PET,” Proc IEEE Med Imag Conf, 2003.

    Google Scholar 

  19. E. Clarkson, D. W. Wilson, H. H. Barrett, “The synthetic collimator for 2D and 3D imaging,” Proc SPIE Med Imag, vol. 3659, pp. 107–117, 1999.

    Article  Google Scholar 

  20. S. E. Derenzo, W.W. Moses, “Experimental efforts and results in finding new heavy scintillators,” Heavy Scint for Sci and Indust Apps, De Notaristefani, F., LeCoq, P., Schneegans, M. eds., Gif-sur-Yvette, France, Editions Frontieres, pp. 125–135, 1993.

    Google Scholar 

  21. A. P. Dhanasopon, C. S. Levin, A.M.K. Foudray, P.D. Olcott, J. A. Talcott, F. Habte, “Scintillation Crystal Design Features for a Miniature Gamma Ray Camera,” Proc IEEE Med Imag Conf, 2003.

    Google Scholar 

  22. P. Dorenbos, J. T. M. de Haas, C. W. E. van Eijk, “Nonproportinoality in Scintillator Response and Energy Resolution Obtainable with Scintillator Crystals,” IEEE Trans Nucl Sci, vol. 42, pp. 2190–2202, 1995.

    Article  Google Scholar 

  23. J. D. Eskin, H. H. Barrett, H. B. Barber, “Signals induced in semiconductor gamma-ray imaging detectors,” J. Appl Phys, vol. 85, pp. 647–659, 1999.

    Article  Google Scholar 

  24. L. R. Furenlid, E. Clarkson, D. G. Marks, H. H. Barrett, “Spatial pileup considerations for pixellated gamma-ray detectors,” IEEE Trans Nucl Sci, vol. 47, pp. 1399–1402, 2000.

    Article  Google Scholar 

  25. E. Gatti, P. Rehak, “Semiconductor drift chamber — an application of a novel charge transport scheme,” Nucl Instr Meth, vol. 225, pp. 608–614, 1984.

    Article  Google Scholar 

  26. D. L. Gunter, “Collimator Characteristics and Design.” In Nuclear Medicine, Henken, R. E., ed., Mosby Year Book, St. Louis, Chap. 8., 1996.

    Google Scholar 

  27. T. Hadig, J. Schwiening, C. Field, G. Mazaheri, M. Jain, D. G. W. S. Leith, B. Ratcliff, J. Va’vra, “Study of Timing and Efficiency Properties of the Hamamatsu H-8500 Photomultiplier,” Proc IEEE Nucl Sci Symp, 2002.

    Google Scholar 

  28. N. Inadama, H. Murayama, M. Watanabe, T. Omura, T. Yamashita, H. Kawai, N. Orita, T. Tsuda, “Performance of 256ch flat panel PSPMT with small crystals for a DOI PET detector,” Proc IEEE Med Imag Conf, 2003.

    Google Scholar 

  29. R. J. Jaszczak, J. Li, H. Wang, M. R. Zallutsky, R. E. Coleman, “Pinhole collimation for ultra-high resolution, small-field-of-viewSPECT studies,” Phys Med Biol, vol. 39, pp. 425–437, 1994.

    Article  Google Scholar 

  30. G. F. Knoll, Radiation Detection and Measurement, 3rd ed., New York, Wiley, 1999.

    Google Scholar 

  31. D. P. Kwo, H. B. Barber, H. H. Barrett, T. S. Hickernell, J. M. Woolfenden, “Comparison of NaI(Tl), HgI2 and CdTe surgical probes II: Effect of scatter compensation on probe performance,” Med Phys, vol. 18, pp. 382–389, 1991.

    Article  Google Scholar 

  32. D. G. Marks, H. B. Barber, H. H. Barrett, J. Tueller, J. M. Woolfenden, “Improving performance of a CdZnTe imaging array by mapping the detector with gamma rays,” Nucl Instr Meth Phys Res A, vol. 428, pp. 102–112, 1999.

    Article  Google Scholar 

  33. J. L. Matteson, W. Coburn, F. Duttweiler, W. A. Heindl, G. L. Huszar, P. C. LeBlanc, M. R. Pelling, L. E. Peterson, R. E. Rothschild, R. T. Skelton, P. L. Hink, C. Crabtree, “CdZnTe arrays for astrophysics applications,” Proc SPIE, vol. 3115, pp. 160–175, 1997.

    Article  Google Scholar 

  34. V. R. McCready, R. P. Parker, E. M. Gunnersen, R. Ellis, E. Moss, W. G. Gore, “Clinical tests with a prototype semiconductor gamma camera,” Brit J. Radiology, vol. 44, pp. 58, 1971.

    Article  Google Scholar 

  35. S. R. Meikle, R. Wojcik, A. G. Weisenberger, M. F. Smith, S. Majewski, P. Kench, S. Eberl, R. R. Fulton, M. Lerch, A. B. Rosenfeld, “CoALA-SPECT: A coded aperture laboratory animal SPECT system for preclinical imaging,” 2002 IEEE Nucl Sci Symp Conference Record, Scott Metzler, ed., Norfolk, Virginia, ISBN 0-7803-7637-4, November 10–16, 2002a.

    Google Scholar 

  36. S. R. Meikle, P. Kench, A. G. Weisenberger, R. Wojcik, M. F. Smith, S. Majewski, S. Eberl, R. R. Fulton, A. B. Rosenfeld, M. J. Fulham, “A prototype coded aperture detector for small animal SPECT,” IEEE Trans Nucl Sci, vol. 49, pp. 2167–2171, 2003b.

    Article  Google Scholar 

  37. D. Mörmann, A. Breskin, R. Chechik, P. Cwetanski, B.K. Singh, “Gas avalanche photomultiplier with a CsI-coated GEM,” Nucl InstrMeth Phys Res A, vol. 478, pp. 230–234, 2002.

    Article  Google Scholar 

  38. W. W. Moses, S. E. Derenzo, “Design studies for a PET detector module using a pin photodiode to measure depth of interaction,” IEEE Trans Nucl Sci, vol. 41, no. 4, pp. 1441–1445, August 1994.

    Article  Google Scholar 

  39. W.W. Moses, S. E. Derenzo, C. L. Melcher, R.A. Manente, “A room temperature LSO/pin photodiode PET detector module that measures depth of interaction,” IEEE Trans Nucl Sci, vol. 42, no. 4, pp. 1085–1089, August 1995.

    Article  Google Scholar 

  40. W. W. Moses, “Current trends in scintillator detectors and materials,” Nucl Instr Meth Phys Res A, vol. 487, pp. 123–128, 2002.

    Article  Google Scholar 

  41. G. Muehllehner, “Effect of resolution improvement on required count density in ECT imaging: a computer simulation,” Phys Med Biol, vol. 30, no. 2, pp. 163–173, 1985.

    Article  Google Scholar 

  42. S. P. Müller, J. F. Polak, M. F. Kijewski, B. L. Holman, “Collimator Selection for SPECT Brain Imaging: The Advantage of High Resolution,” J. Nucl Med, vol. 27, pp. 1729–1738, 1986.

    Google Scholar 

  43. K. J. Myers, J. P. Rolland, H. H. Barrett, R. F. Wagner, “Aperture optimization for emission imaging: Effect of a spatially varying background,” J. Opt Soc Am A, vol. 7, pp. 1279–1293, 1990.

    Article  Google Scholar 

  44. N. Orita, H. Murayama, H. Kawai, N. Inadama, T. Tsuda, “Three Dimensional Array of Scintillation Crystals with Proper Reflector Arrangement for a DOI detector,” Proc IEEE Med Imag Conf, 2003.

    Google Scholar 

  45. R. Pani, R. Pellegrini, M. N. Cinti, C. Trotta, G. Trotta, R. Scafe, M. Betti, F. Cusanno, L. Montani, G. Iurlaro, F. Garibaldi, Del A. Guerra, “A novel compact gamma camera based on flat panel PMT,” Nucl Instr Meth Phys Res A, vol. 513, no. 1, pp. 36–41, 2003.

    Article  Google Scholar 

  46. R. Pani, R. Pellegrini, M. N. Cinti, M. Mattioli, C. Trotta, L. Montani, G. Iurlaro, G. Trotta, D’L. Addio, S. Ridolfi, De G. Vincentis, I. N. Weinberg, “Recent advances and future perspectives of position sensitive PMT,” Nucl Instr Meth Phys Res B, vol. 213, pp. 197–205, 2004.

    Article  Google Scholar 

  47. V. Radeka, “Low-noise techniques in detectors,” Ann RevNucl Part Sci, vol. 38, pp. 217–277, 1988.

    Article  Google Scholar 

  48. P. A. Rodnyi, “Core-valence band transitions in wide-gap ionic crystals,” Sov Phys Solid State, vol. 34, pp. 1053–1066, 1992

    Google Scholar 

  49. M. M. Rogulski, H. B. Barber, H. H. Barrett, R. L. Shoemaker, J. M. Woolfenden, “Ultra-high-resolution brain SPECT: simulation results,” IEEE Trans Nucl Sci, vol. 40, pp. 1123–1129, 1993.

    Article  Google Scholar 

  50. J. P. Rolland, H. H. Barrett, G. W. Seeley, “Quantitative study of deconvolution and display mappings for long-tailed point-spread functions,” Proc SPIE, vol. 1092, pp. 17–21, 1989.

    Google Scholar 

  51. J. P. Rolland, Factors influencing lesion detection inmedical imaging, Ph.D. Dissertation, University of Arizona, Tucson, Arizona, 1990.

    Google Scholar 

  52. J. P. Rolland, H. H. Barrett, G. W. Seeley, “Ideal versus human observer for long-tailed point spread functions: Does deconvolution help?” Phys Med Biol, vol. 36, no. 8, pp. 1091–1109, 1991.

    Article  Google Scholar 

  53. J. P. Rolland, H. H. Barrett, “Effect of random background inhomogeneity on observer detection performance,” J. Opt Soc Am A, vol. 9, no. 5, pp. 649–658, 1992.

    Google Scholar 

  54. J. M. Ryan, J. R. Macri, M. L. McConnell, B. K. Dann, M. L. Cherry, T.G. Guzik, F. P. Doty, B.A. Apotovsky, J. F. Butler, “Large area sub-millimeter resolution CdZnTe strip detector for astronomy,” Proc SPIE, vol. 301, pp. 2518:292, 1995.

    Google Scholar 

  55. N. Schramm, G. Ebel, U. Engeland, M. Behe, T. Schurrat, T. M. Behr, “Multi-pinhole SPECT for small animal research,” J. Nucl Med, vol. 43, no. 5, pp. S.913, 2002.

    Google Scholar 

  56. M. F. Smith, R. Jaszczak, “An analytic model of pinhole aperture penetration for 3D pinhole SPECT image reconstruction,” Phys Med Biol, vol. 43, pp. 761–775, 1998.

    Article  Google Scholar 

  57. C. M. Stahle, A. Parsons, L. M. Bartlett, P. Kurczynski, J. F. Krizmanic, L.M. Barbier, S.D. Barthelmy, F. Birsa, N. Gehrels, J. Odom, D. Palmer, C. Sappington, P. Shu, Teegarden B. J., J. Tueller, “CdZnTe strip detector for arc second imaging and spectroscopy,” Proc Society Photo-Optical and Instr Eng, vol. 2859, pp. 74–84, 1996.

    Google Scholar 

  58. B. M. W. Tsui, C. E. Metz, F. B. Atkins, S. J. Starr, R. N. Beck, “A Comparison of Optimum Detector Spatial Resolution in Nuclear Imaging based on Statistical Theory and on Observer Performance,” Phys Med Biol, vol. 23, no. 4, pp. 654–676, 1978.

    Article  Google Scholar 

  59. B.M.W. Tsui, C. E. Metz, Beck, R.N. “Optimum detector spatial resolution for discriminating between tumour uptake distributions scintigraphy,” Phys Med Biol, vol. 28, no. 7, pp. 775–788, 1983.

    Article  Google Scholar 

  60. R. F. Wagner, D. G. Brown, “Unified SNR analysis of medical imaging systems,” Phys Med Biol, vol. 30, no. 6, pp. 489–518, 1985.

    Article  Google Scholar 

  61. Y. J. Wang, B. E. Patt, J. S. Iwanczyk, S. R. Cherry, Y. Shao, “High efficiency CsI(Tl)/HgI2 2 gamma ray spectrometers,” IEEE Trans Nucl Sci, vol. 42, no. 4, pp. 601–605, 1995.

    Article  Google Scholar 

  62. T. A. White, SPECT reconstruction directly from photomultiplier tube signals, Ph.D. Dissertation, University of Arizona, Tucson, Arizona, 1994.

    Google Scholar 

  63. M. J. Weber, “Inorganic scintillators: today and tomorrow,” J. Lums, vol. 100, pp. 35–45, 2002.

    Article  Google Scholar 

  64. D. W. Wilson, E. W. Clarkson, H. H. Barrett, “Reconstruction of two-and three-dimensional images from synthetic collimator data,” IEEE Trans Med Im, vol. 19, no. 5, pp. 412–422, 2000.

    Article  Google Scholar 

  65. van C. W. E. Eijk, “Inorganic scintillators in medical imaging,” Phys Med Biol, vol. 47, pp. R85–R106, April 21, 2002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Barrett, H.H., Hunter, W.C.J. (2005). Detectors for Small-Animal SPECT I. In: Kupinski, M.A., Barrett, H.H. (eds) Small-Animal Spect Imaging. Springer, Boston, MA. https://doi.org/10.1007/0-387-25294-0_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-25294-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25143-1

  • Online ISBN: 978-0-387-25294-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics