Skip to main content

Comparative Metabolome Profiling Using Two Dimensional Thin Layer Chromatography (2DTLC)

Applications to bacterial metabolomics

  • Chapter
  • 1148 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhattacharya M, Fuhrman L, Ingram A, Nickerson KW and Conway T. Single-run separation and detection of multiple metabolic intermediates by anion-exchange high-performance liquid chromatography and application to cell pool extracts prepared from Escherichia coli. Anal. Biochem., 232: 98–106 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Bochner BR and Ames BN. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J. Biol. Chem., 257: 9759–9769 (1982).

    PubMed  CAS  Google Scholar 

  • Buchholz A, Takors R and Wandrey C. Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal. Biochem., 295: 129–137 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Cronan JE. Phospholipid modifications in bacteria. Curr. Opinion Microbiol., 5: 202–205 (2002).

    Article  CAS  Google Scholar 

  • de Koning W and van Dam K. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal. Biochem., 204: 118–23 (1992).

    Article  PubMed  Google Scholar 

  • Dillon PF and Sears PR. Capillary electrophoretic measurement of tissue metabolites. Am. J. Physiol. — Cell Physiol., 274: C840–C845 (1998).

    CAS  Google Scholar 

  • Edwards JS and Palsson BO. Robustness analysis of the Escherichia coli metabolic network. Biotech. Prog., 16: 927–939 (2000).

    Article  CAS  Google Scholar 

  • Elmore MJ, Lamb AJ, Ritchie GY, Douglas RM, Munro A, Gajewska A and Booth IR. Activation of potassium efflux from Escherichia coli by glutathione metabolites. Mol. Microbiol., 4: 405–412 (1990).

    PubMed  CAS  Google Scholar 

  • Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T, Wuthrich K, Bailey JE and Sauer U. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J. Bacteriol., 184: 152–164 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O. Metabolomics — the link between genotypes and phenotypes. Plant Mol. Biol., 48: 155–171 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN and Willmitzer L. Metabolite profiling for plant functional genomics. Nat. Biotechnol., 18: 1157–1161 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Fischer E and Sauer U. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur. J. Biochem., 270: 880–891 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Folch J, Lees M. and Stanley SGH. A simple method for the isolation and purification of total lipids from animal tissues. Biol. Chem., 226: 497–509 (1957).

    CAS  Google Scholar 

  • Gonzalez B, Francois J and Renaud M. A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast, 13: 1347–1355 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG and Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends in Biotechnology 22: 245–252 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hua Q, Yang C, Baba T, Mori H and Shimizu K. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J. Bacteriol., 185: 7053–7067 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Jannasch HW and Egli T. Microbial growth kinetics: a historical perspective. Ant. Van Leeuwenhoek Int J. Gen.Mol. Microbiol., 63: 213–224 (1993).

    Article  CAS  Google Scholar 

  • Jarvis RM and Goodacre R. Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria. FEMS Microbiology Letters, 232: 127–132 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Karp PD, Riley M, Saier M, Paulsen IT, Collado-Vides J, Paley SM, Pellegrini-Toole A, Bonavides C and Gama-Castro S. The EcoCyc database. Nuc. Acids Res., 30: 56–58 (2002).

    Article  CAS  Google Scholar 

  • Klapa MI and Stephanopoulos G. Observability and redundancy analysis of complex metabolic networks. Faseb J., 14: A1313–A1313 (2000).

    Google Scholar 

  • Kobayashi K et al. Essential Bacillus subtilis genes. Proc.Nat. Acad. Sc. USA, 100: 4678–4683 (2003).

    Article  CAS  Google Scholar 

  • Koffas M, Roberge C, Lee K and Stephanopoulos G. Metabolic engineering. Ann. Rev. Biomed. Eng., 1:535–557 (1999).

    Article  CAS  Google Scholar 

  • Lai X, Wang S and Uhlin B. Expression of cytotoxicity by potential pathogens in the standard Escherichia coli collection of reference (ECOR) strains. Microbiol., 145: 3295–3303 (1999).

    CAS  Google Scholar 

  • Liu XQ, Ng C and Ferenci T. Global adaptations resulting from high population densities in Escherichia coli cultures. J. Bacteriol., 182: 4158–4164 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Maharjan RP and Ferenci T. Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal. Biochem., 313: 145–154 (2003).

    Article  PubMed  Google Scholar 

  • Mahon P and Dupree P. Quantitative and reproducible two-dimensional gel analysis using Phoretix 2D Full. Electrophor., 22: 2075–2085 (2001).

    Article  CAS  Google Scholar 

  • Mori H, Isono K, Horiuchi T and Miki T. Functional genomics of Escherichia coli in Japan. Res. Microbiol., 151: 121–128 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Notley-McRobb L, Death A and Ferenci T. The relationship between external glucose concentration and cAMP levels inside Escherichia coli — implications for models of phosphotransferase-mediated regulation of adenylate cyclase. Microbiol., 143: 1909–1918 (1997).

    Article  CAS  Google Scholar 

  • Penninckx MJ. and Elskens MT. Metabolism and functions of glutathione in micro-organisms. Adv.Microb. Physiol., 34: 239–301 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Poole CF. Thin-layer chromatography: Challenges and opportunities. J. Chromat. A, 1000: 963–984 (2003).

    Article  CAS  Google Scholar 

  • Poole CF and Poole SK. Multidimensionality in planar chromatography. J. Chromat. A, 703: 573–612 (1995).

    Article  CAS  Google Scholar 

  • Price ND, Papin JA, Schilling CH and Palsson BO. Genome-scale microbial in silicon models: the constraints-based approach. Trends Biotechnol., 21: 162–169 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Pupo GM, Karaolis DK, Lan RT and Reeves PR. Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Inf. Imm., 65: 2685–2692 (1997).

    CAS  Google Scholar 

  • Pupo GM, Lan RT, Reeves PR and Baverstock PR. Population genetics of Escherichia coli in a natural population of native Australian rats. Env. Microbiol., 2: 594–610 (2000).

    Article  CAS  Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D, Zhang NS, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K and Oliver SG. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol., 19: 45–50 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Schaefer U, Boos W, Takors R and Weuster-Botz D. Automated sampling device for monitoring intracellular metabolite dynamics. Anal. Biochem., 270: 88–96 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Selander RK, Caugant DA and Whittam TS. In Escherichia coli and Salmonella typhimurium. Cellular and molecular biology (Ed, Neidhardt, F. C.) ASM Press, Washington DC, pp. 1625–1648 (1987).

    Google Scholar 

  • Souza V, Rocha M, Valera A and Eguiarte LE. Genetic structure of natural populations of Escherichia coli in wild hosts on different continents. Appl.Env. Microbiol., 65: 3373–3385 (1999).

    CAS  Google Scholar 

  • Storz G and Hengge-Aronis R. Bacterial stress responses, ASM Press, Washington D.C (2000).

    Google Scholar 

  • Sweetman G, Trinei M, Modha J, Kusel J, Freestone P, Fishov I, Joseleaupetit D, Redman C, Farmer P and Norris V. Electrospray ionization mass spectrometric analysis of phospholipids of Escherichia coli. Mol. Microbiol., 20: 233–234 (1996).

    PubMed  CAS  Google Scholar 

  • Tempest DW, Meers JL and Brown CM. Influence of environment on the content and composition of microbial free amino acid pools. J. Gen. Microbiol., 64: 171–185 (1970).

    PubMed  CAS  Google Scholar 

  • Tkachenko AG, Salakhetdinova OY and Pshenichnov MR. Putrescine/potassium exchange as an adaptive response of Escherichia coli to hyperosmotic stress. Microbiol., 66: 274–278 (1997).

    CAS  Google Scholar 

  • Tweeddale H, Notley-McRobb L and Ferenci T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J.Bacteriol., 180: 5109–5116 (1998).

    PubMed  CAS  Google Scholar 

  • Tweeddale H, Notley-McRobb L and Ferenci T. Assessing the effect of reactive oxygen species on Escherichia coli using a metabolome approach. Redox Rep., 4: 237–241 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Wada A, Mikkola R, Kurland CG and Ishihama A. Growth phase-coupled changes of the ribosome profile in natural isolates and laboratory strains of Escherichia coli. J. Bacteriol., 182: 2893–2899 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Weuster-Botz D and de Graaf AA. Reaction engineering methods to study intracellular metabolite concentrations. Adv. Biochem. Eng. Biotechnol., 54: 75–108 (1996).

    PubMed  CAS  Google Scholar 

  • Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humpherysmith I, Williams KL and Hochstrasser DF. From proteins to proteomes — large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnol., 14: 61–65 (1996).

    Article  CAS  Google Scholar 

  • Zhao J, Baba T, Mori H and Shimizu K. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Appl. Microbiol. Biotechnol., 64: 91–98 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ferenci, T., Maharjan, R. (2005). Comparative Metabolome Profiling Using Two Dimensional Thin Layer Chromatography (2DTLC). In: Vaidyanathan, S., Harrigan, G.G., Goodacre, R. (eds) Metabolome Analyses: Strategies for Systems Biology. Springer, Boston, MA. https://doi.org/10.1007/0-387-25240-1_5

Download citation

Publish with us

Policies and ethics