Skip to main content

Metabolic Networks from a Systems Perspective

From experiment to biological interpretation

  • Chapter
Metabolome Analyses: Strategies for Systems Biology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebersold R and Mann M. Mass spectrometry-based proteomics. Nature, 422: 198–207 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ahmed N, Barker G, Oliva K, Garfin D, Talmadge K, Georgiou H, Quinn M and Rice G. An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics, 3: 1980–1987 (2003).

    Article  PubMed  CAS  Google Scholar 

  • apRees T. Integration of pathways of synthesis and degradation of hexose phosphates. In Preiss, J. (ed.), The Biochemistry of Plants, volume 3, pages 1–29. Academic Press, New York (1980).

    Google Scholar 

  • Arkin A and Ross J. Statistical construction of chemical-reaction mechanisms from measured time-series. J. Phys. Chem., 99: 970–979 (1995).

    Article  CAS  Google Scholar 

  • Arkin A, Shen PD and Ross J. A test case of correlation metric construction of a reaction pathway from measurements. Science, 277: 1275–1279 (1997).

    Article  CAS  Google Scholar 

  • Castrillo JO and Oliver SG. Yeast as a touchstone in postgenomic research: Strategies for integrative analysis in functional genomics. J. Biochem. Mol. Biol., 37: 93–106 (2004).

    PubMed  CAS  Google Scholar 

  • Chelius D, Zhang T, Wang GH and Shen RF. Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry. Anal. Chem., 75: 6658–6665 (2003).

    Article  PubMed  CAS  Google Scholar 

  • D’haeseleer P, Liang S and Somogyi R. Genetic network inference: From co-expression clustering to reverse engineering. Bioinformatics, 16: 707–726 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Dole M, Mack LL and Hines RL. Molecular beams of macroions. J. Chem. Phys., 49: 2240–2249 (1968)

    Article  CAS  Google Scholar 

  • Duran AL, Yang J, Wang LJ and Sumner LW. Metabolomics spectral formatting, alignment and conversion tools (msfacts). Bioinformatics, 19: 2283–2293 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN and Willmitzer L. Metabolite profiling for plant functional genomics. Nat. Biotechnol., 18: 1157–1161 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O and Weckwerth W. Deciphering metabolic networks. Eur. J. Biochem., 270: 579–588 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu YM, Gardner MJ, Holder AA, Sinden RE, Yates JR and Carucci, DJ. A proteomic view of the Plasmodium falciparum life cycle. Nature, 419: 520–526 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Forgacs E. Retention characteristics and practical applications of carbon sorbents. J. Chromatogr. A, 975: 229–243 (2002).

    PubMed  CAS  Google Scholar 

  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, and Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol., 22: 245–252 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Goodlett DR, Keller A, Watts JD, Newitt R, Yi EC, Purvine S, Eng JK, von Haller P, Aebersold R and Kolker E. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun. Mass Spectrom., 15: 1214–1221 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R and Schuster S. The Regulation of Cellular Systems. Chapman and Hall, New York (1996).

    Google Scholar 

  • Hofmeyr JHS, Cornish-Bowden A, and Rohwer JM. Taking enzyme kinetics out of control: Putting control into regulation. Eur. J. Biochem., 212: 833–837 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Hughey C, Rodgers R and Marshall A. Resolution of 11 000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Anal. Chem., 74: 4145–9 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Ihmels J, Levy R and Barkai N. Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat. Biotechnol., 22: 86–92 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Jennings KR. The changing impact of the collision-induced decomposition of ions on mass spectrometry. Internal. J. Mass Spectrom., 200: 479–493 (2000).

    Article  CAS  Google Scholar 

  • Kacser H, Burns JA and Fell DA. The control of flux. Biochem. Soc. Trans., 23: 341–366 (1995).

    PubMed  CAS  Google Scholar 

  • Kell DB. Metabolomics and machine learning: explanatory analysis of complex metabolome data using genetic programming to produce simple, robust rules. Mol. Biol. Rep., 29: 237–241 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kell DB, Darby RM and Draper J. Genomic computing. Explanatory analysis of plant expression profiling data using machine learning. Plant Physiol., 126: 943–951 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kenney B and Shockcor JP. Metabonomic studies. Pharmagenomics, Nov/Dec 56–63 (2003).

    Google Scholar 

  • Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D, Ulaszek R, Wei J, Wolters D and Yates JR. Proteomic survey of metabolic pathways in rice. Proc. Natl. Acad. Sci. USA., 99: 11969–11974 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kose F, Weckwerth W, Linke T and Fiehn O. Visualizing plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics, 17: 1198–1208 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Leonard C and Sacks R. Tunable-column selectivity and timeof-flight detection for high-speed gc/ms. Anal. Chem., 71: 5177–5184 (1999).

    Article  CAS  Google Scholar 

  • Lorence A, Chevone BI, Mendes P and Nessler CL. Myoinositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol., 134: 1200–1205 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Marcotte EM. The path not taken. Nat. Biotechnol., 19: 626–627 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Matuszewski BK, Constanzer ML and Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on hplc-ms/ms. Anal. Chem., 75: 3019–3030 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Molloy MP, Brzezinski EE, Hang JQ, McDowell MT and VanBogelen RA. Overcoming technical variation and biological variation in quantitative proteomics. Proteomics, 3: 1912–1919 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Connelly J, Lindon JC and Holmes E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov., 1: 153–161 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Lindon JC and Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29: 1181–1189 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Niessen WMA. State-of-the-art in liquid chromatography-mass spectrometry. J. Chromatography A, 856: 179–197 (1999).

    Article  CAS  Google Scholar 

  • Oda Y, Huang K, Cross FR, Cowburn D and Chait BT. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA, 96: 6591–6596 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB and Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol., 16: 373–378 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, and Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics, 1: 376–386 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Papin JA, Price ND, Wiback SJ, Fell DA and Palsson BO. Metabolic pathways in the post-genome era. Trends Biochem. Sci., 28: 250–258 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Premstaller A, Oberacher H, Walcher W, Timperio AM, Zolla L, Chervet JP, Cavusoglu N, van Dorsselaer A and Huber CG. High-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic capillary columns for proteomic studies. Anal. Chem., 73: 2390–2396 (2001)

    Article  PubMed  CAS  Google Scholar 

  • Rao CV, Wolf DM and Arkin AP. Control, exploitation and tolerance of intracellular noise. Nature, 420: 231–237 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Ravasz E and Barabasi AL. Hierarchical organization in complex networks. Phys. Rev. E, 67: 026112 (2003)

    Article  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L and Fernie AR. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell, 13: 11–29 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN and Willmitzer L. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J., 23: 131–142 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Sauter H, Lauer M and Fritsch H. Metabolic profiling of plants — a new diagnostic-technique. Abstr. Pap. Am. Chem. Soc., 195: 129 (1991)

    Google Scholar 

  • Schmidt F, Donahoe S, Hagens K, Mattow J, Schaible UE, Kaufmann SHE, Aebersold R, and Jungblut PR. Complementary analysis of the mycobacterium tuberculosis proteome by twodimensional electrophoresis and isotope-coded affinity tag technology. Mol. Cell Proteomics, 3: 24–42 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Schuster S, Fell DA, and Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol., 18: 326–332 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Schuster S, Klamt S, Weckwerth W, Moldenhauer F and Pfeiffer T. Use of network analysis of metabolic systems in bioengineering. Bioproc. Biosyst. Eng., 24: 363–372 (2002).

    Article  CAS  Google Scholar 

  • Sharom JR, Bellows DS and Tyers M. From large networks to small molecules. Curr. Opin. Chem. Biol., 8: 81–90 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Smolka MB, Zhou HL, Purkayastha S and Aebersold R. Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis. Anal. Biochem., 297: 25–31 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Stafford G. Ion trap mass spectrometry: A personal perspective. J. Am. Soc. Mass Spectrom., 13: 589–596 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Stein SE. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom., 10: 770–781 (1999).

    Article  CAS  Google Scholar 

  • Stein SE and Scott DR. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom., 5: 859–866 (1994).

    Article  CAS  Google Scholar 

  • Steuer R, Kurths J, Fiehn O and Weckwerth W. Observing and interpreting correlations in metabolomic networks. Bioinformatics, 19: 1019–1026 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Wilke I, Feil R and Heldt HW. Coarse control of sucrose-phosphate synthase in leaves — alterations of the kinetic-properties in response to the rate of photosynthesis and the accumulation of sucrose. Planta, 174: 217–230 (1988).

    Article  CAS  Google Scholar 

  • Strittmatter EF, Ferguson PL, Tang KQ and Smith RD. Proteome analyses using accurate mass and elution time peptide tags with capillary Ic time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom., 14: 980–991 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Tabb DL, McDonald WH and Yates JR. Datselect and contrast: Tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res., 1: 21–26 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N and Kobayashi H. Monolithic columns for liquid chromatography. Anal. Bioanal. Chem., 376: 298–301 (2003).

    PubMed  CAS  Google Scholar 

  • Taylor J, King RD, Altmann T and Fiehn O. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics, 18: S241–S248 (2002).

    PubMed  Google Scholar 

  • Tolstikov V, Lommen A, Nakanishi K, Tanaka N and Fiehn O. Monolithic silica-based capillary reversed-phase liquid chromatography/ electrospray mass spectrometry for plant metabolomics. Anal. Chem., 75: 6737–40 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Tolstikov VV and Fiehn O. Analysis of highly polar compounds of plant origin: Combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal. Biochem., 301: 298–307 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Tong CS and Cheng KC. Mass spectral search method using the neural network approach. Chemomet. Intell. Lab. Sys., 49: 135–150 (1999).

    Article  CAS  Google Scholar 

  • VerBerkmoes NC, Bundy JL, Hauser L, Asano KG, Razumovskaya J, Larimer F, Hettich RL and Stephenson Jr JL. Integrating “top-down” and “bottom-up” mass spectrometric approaches for proteomic analysis of shewanella oneidensis. J. Proteome Res., 1: 239–252 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Veriotti T and Sacks R. High-speed gc and gc/time-of-flight ms of lemon and lime oil samples. Anal. Chem., 73: 4395–4402 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Wagner A. Can nonlinear epigenetic interactions obscure causal relations between genotype and phenotype? Nonlinearity, 9: 607–629 (1996).

    Article  Google Scholar 

  • Wagner A. Causality in complex systems. Biology and Philosophy, 14: 83–101 (1997).

    Article  Google Scholar 

  • Wang WX, Zhou HH, Lin H, Roy S, Shaler TA, Hill LR, Norton S, Kumar P, Anderle M and Becker CH. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem., 75: 4818–4826 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Washburn MP, Wolters D and Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification. Nat. Biotechnol., 19: 242–247 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Watson JT, Schultz GA, Tecklenburg RE and Allison, J. Renaissance of gas-chromatography time-of-flight mass-spectrometry — meeting the challenge of capillary columns with a beam deflection instrument and time array detection. J. Chromatography, 518: 283–295 (1990).

    Article  CAS  Google Scholar 

  • Weckwerth W. Metabolomics in systems biology. Ann. Rev. Plant Biol., 54: 669–689 (2003).

    Article  CAS  Google Scholar 

  • Weckwerth W and Fiehn O. Can we discover novel pathways using metabolomic analysis? Curr. Opin. Biotechnol., 13: 156–160 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W, Loureiro M, Wenzel K and Fiehn O. Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl. Acad. Sci. USA, 101: 7809–7814 (2004a).

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W, Miyamoto K, Iinuma K, Krause M, Glinski M, Storm T, Bonse G, Kleinkauf H and Zocher R. Biosynthesis of pf1022a and related cyclooctadepsipeptides. J. Biol. Chem., 275: 17909–17915 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W, Tolstikov V and Fiehn O. Metabolomic characterization of transgenic potato plants using gc/tof and Ic/ms analysis reveals silent metabolic phenotypes. In Proceedings of the 49 th ASMS Conference on Mass spectrometry and Allied Topics, volume 1–2. American Society of Mass Spectrometry, Chicago (2001).

    Google Scholar 

  • Weckwerth W, Wenzel K and Fiehn O. Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics, 4: 78–83 (2004b).

    Article  PubMed  CAS  Google Scholar 

  • Wienkoop S, Glinski M, Tanaka N, Tolstikov V, Fiehn O and Weckwerth W. Linking protein fractionation with multidimensional monolithic RP peptide chromatography/mass spectrometry enhances protein identification from complex mixtures even in the presence of abundant proteins. Rapid Commun. Mass Spectrom., 18: 643–650 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Winter H and Huber SC. Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Crit. Rev. Biochem. Mol. Biol., 35: 253–289 (2000).

    PubMed  CAS  Google Scholar 

  • Yamashita M and Fenn JB. Electrospray ion-source — another variation on the free-jet theme. J. Physical Chem., 88: 4451–4459 (1984).

    Article  CAS  Google Scholar 

  • Yates JR. Mass spectrometry — from genomics to proteomics. Trends Genet., 16: 5–8 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Weckwerth, W., Steuer, R. (2005). Metabolic Networks from a Systems Perspective. In: Vaidyanathan, S., Harrigan, G.G., Goodacre, R. (eds) Metabolome Analyses: Strategies for Systems Biology. Springer, Boston, MA. https://doi.org/10.1007/0-387-25240-1_15

Download citation

Publish with us

Policies and ethics